
Interaction Platform for Improving Detection Capability
of Dynamic Application Security Testing

Jonghwan Im, Jongwon Yoon and Minsik Jin
PA Division, Fasoo.com R&D Center, 396 World Cup Buk-ro Mapo-gu, Seoul, Republic of Korea

Keywords: Web Application Security Testing, SAST, DAST, IAST, XSS, SDLC.

Abstract: Dynamic application security testing detects security vulnerabilities by sending predefined strings to web
applications. So if the web applications have filters which restrict input parameters, the detection capability
of dynamic application security testing is degraded. To solve this problem, interactive application security
testing have emerged in which dynamic application security testing interact with static application security
testing. In this paper, we propose an interactive platform for storing, processing, and distributing
information collected from each security test in the software development life cycle. And we use this
platform to verify that we can detect cross-site script vulnerabilities that could not be detected due to web
application filters. Experiments on the proposed approach for the cross-site script vulnerability test case of
OWASP Benchmark show that the detection rate of the dynamic analyzer is improved by about 32.11%.

1 INTRODUCTION

Dynamic Application Security Testing (DAST),
which is performed during the test and operation
phases of the Software Development Life Cycle
(SDLC) of web applications, is highly accurate
because of detecting vulnerabilities in real-time
execution of web applications. Whereas it is difficult
to examine all execution paths of web applications
(Ernst, 2003). And it uses a predefined attack string
to check security vulnerabilities such as Cross-Site
Script (XSS) that can be caused by input value (Fu
et al., 2007). So, it is hard to detect security
vulnerability of web application that has filter to
restrict input value (Kiezun et al., 2009).

To overcome these drawbacks, an Interactive
Analysis Security Testing (IAST) was proposed.
IAST is a way to improve the quality of security
tests by surmounting the limits of each security
analysis through the interaction of Static Application
Security Testing(SAST) and DAST (MacDonal,
2012).

To perform IAST on SDLC, a module is needed
to store, process, and transfer the information
gathered from each security testing.

Our paper makes the follow contributions:
 We propose a platform to manage information

flow between security tests on SDLC.

 It uses the information provided by the platform
to detect XSS that could not be detected by the
filters of the web applications, thereby improving
the detection capability of the dynamic analyzer.

In Section 3, we explain how to collect information
from a static analyzer, how to send collected
information to the platform and how to generate
attack strings to bypass filter with information
received by the platform. In Section 4, the
effectiveness of the proposed approach is verified
through experiments.

2 RELATED WORK

Several studies have been suggested to become
better a dynamic analyzer by combining static and
dynamic analysis.

Saner (Balzarotti et al., 2008) is a tool which
extracts input value validation process of the web
application source codes and checks whether the
validation process during execution extracted works
properly.

WebSSARI (Web application Security by Static
Analysis and Runtime Inspection) (Huang et al.,
2004) applies type system for inspecting input
values of web application finds source codes where
vulnerabilities occurs. And then it monitors and
protects those codes in real time.

474
Im, J., Yoon, J. and Jin, M.
Interaction Platform for Improving Detection Capability of Dynamic Application Security Testing.
DOI: 10.5220/0006437104740479
In Proceedings of the 14th International Joint Conference on e-Business and Telecommunications (ICETE 2017) - Volume 4: SECRYPT, pages 474-479
ISBN: 978-989-758-259-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Figure 1: Platform for interaction between static and dynamic analyzer in SDLC.

Figure 2: Interaction flow chart between static and dynamic analyzer using platform.

Some studies address dynamically, statically
tracing web application input values to monitor
sensitive information flow and control input values
that cause vulnerabilities (Ruso and Sabelfeld, 2010).

In additional, there have been studies to
circumvent filters of web applications using string
constraint solver, a string generation tool that avoids
constraints. During the compilation process,
SAFELI (Fu et al., 2007) is a framework that uses
symbolic execution to statically analyse the
bytecode of the web application to find the parts
where the value is input. And, it generates SQL
queries using a string constraint solver and enters
these into the found parts to discover SQL injection
vulnerabilities. SUSHI Constraint Solver (Fu et al.,
2007) blocks security holes by resolving SISE
(Simple Linear String Equation), which is a
constraint that is consisted of data enter conditions
and attack patterns gotten by static analysis.

However, these studies have focused on
including a getting source code information feature
in the dynamic analyzer. It is difficult to exploit the
static analyzers used on SDLC.

This paper suggests an approach that can make
use of the static analyzers worked on SDLC and
enhance detection capability of the dynamic
analyzers at the same time.

3 PROPOSED APPROACH

Figure 1 presents a proposed interaction platform
structure. This platform stores, processes and shares
the information sent from each analyzer on SDLC. It
helps interactions between the analyzers.

To overcome the limit, which cannot catch
vulnerabilities when payloads with attack strings
sent from a dynamic analyzer are restricted due to
filters of web applications, attack strings bypassing
the filters are required. A string constraint solver
creates the attack strings to circumvent filter with
input parameter constraints of the web application
filters. The Input parameter constraints are obtained
by the static analyzers. The platform has a string
constraint solver, so this platform creates the attack
strings circumventing the filter constraints and sends
the strings to the dynamic analyzer. The dynamic
analyzer uses these attack strings as the payloads for
detecting vulnerabilities.

This section describes data flow between the
static analyzer, dynamic analyzer and the platform.
And it explains what information collected by the
static analyzer and how to generate the attack strings
that avoid web application filter constraints in the
platform.

Interaction Platform for Improving Detection Capability of Dynamic Application Security Testing

475

Figure 3: Data flow from static analyzer to platform, platform to dynamic analyzer.

3.1 Interaction Process

Figure 2 shows information flow between the static
analyzer, dynamic analyzer and the platform. After
the static analyzer performs analysis, it sends URL,
parameter name, filter constraints information to the
platform. These data are treated in Section 3.2. The
platform saves these data. Before the dynamic
analyzer attacks a target for detecting vulnerabilities,
it requests attack strings circumventing filter to the
platform with a target URL, payload to be used, and
parameter name that is assigned the payload. Then
the platform looks for filter constraints that match
the data sent by dynamic analyzer form the stored
data. If the filter constraints are found, the string
constraint solver generates strings that avoid the
filter constraints and these strings are sent to the
dynamic analyzer. The dynamic analyzer uses these
strings as payloads to attack web applications and
detect vulnerabilities. Through such a procedure, the
platform is used for interaction between each
analyzer.

3.2 Gather Filter Information

Left side of Figure 3 means a data flow from the
static analyzer to the platform. The following
information is transmitted.
 URL: URL information that has filters for input

values
 Parameter name: Parameter name information

assigned the input values
 Filter Constraints: The constraints for input

values in the filters.

The static analyzer gathers URL, parameter name
and filter constraints information by
getFilterInfo function.

FUNCTION getFilterInfo(function)

Http request is a data which a client
sends to a server.
Http request parameter consists of a

name and input value.
The function should have URL

information.
The callStack is a stack structure

which saves all caller of the function.
The callStackList is a list of all

the function’s callStack gotten by
static analyzer.

START
parameterList ← a list of using

parameters in
function.

WHILE parameter in parameterList
name ← parameter.name
WHILE callStack in callStackList
 WHILE callStack is not empty

constraints ← find parameter
constraints

 callerFunction ← callStack.pop
ENDWHILE

 IF there are constraints
 url ← URL imformation of caller

 sendToPlatform(url, name,
constraints)

 ENDIF
 ENDWHILE
ENDWHILE

END

Figure 4: Pseudo code of getFilterInfo function.

In the Figure 4, getFilterInfo receives a
function that invokes parameters for getting input
value. Then all parameters used in the function are
saved in parameterList. A name of a parameter

SECRYPT 2017 - 14th International Conference on Security and Cryptography

476

that is an element of parameterList is sought
and assigned to name variable. And the constraints
of the parameter are found by popping a caller in
callStack that is the stack on which all callers of
the function are piled up. Then those constraints are
saved in constraints variable. When there are
no more callers to pop from the callStack, URL
information of the last extracted caller is saved in a
url variable. Finally, the information saved in
name, constraints, url variables are
transmitted to the platform by calling
sendToPlatform function.

3.3 Create Attack Strings Bypassing
Filter

A data flow between the platform and the dynamic
analyzer is shown in the right side of Figure 3. The
information that the dynamic analyzer sends with a
request is as follows.
 Target URL: URL information to be attacked for

detecting vulnerabilities.
 Target parameter name: The name information of

parameter to be assigned attack payload.
 Payload: The predefined string to be used for

attack.

FUNCTION getBypassPayload
(url, parameterName,
payload)

The filterTable stores the url,
parameter name, and filter constraints.
The solver(payload, constraints)

creates a bypass payload.
.

START
constraints ←

filterTable.getConstrain
ts
(url, parameterName)

IF there are constraints
 bypass ← solver(payload,
constraints)
 RETURN bypass

ELSE
 RETURN payload
ENDIF

END

Figure 5: Pseudo code of getBypassPayload function.

When the request with the information come to
the platform from the dynamic analyzer, the

getBypassPayload function of the platform
creates attack strings avoiding filter and transmits it
to the dynamic analyzer.

In the getBypassPayload function of
Figure5, filter constraints that are found by matching
target URL and target parameter name in
filterTable, which has the information sent
from the static analyzer, are stored in
constraints variable. If there are values in
constraints variable, a string constraint solver
generates strings that circumvent the constraints. If
not, the platform gives back the payload sent from
the dynamic analyzer.

The dynamic analyzer puts the strings obtained
from the platform in http request messages as attack
payloads and attacks the target for detecting
vulnerabilities. In this way, the dynamic analyzer
can detect vulnerabilities that could not be found
because the predefined attack strings are restricted to
the parameter constraints of the filters.

4 EXPERIMENT

This section verifies the proposed approach actually
improves the detection performance of the dynamic
analyzer by conducting experiment.

4.1 Experiment Environment

An experiment were performed with XSS among the
test cases of OWASP Benchmark v1.2 (OWASP,
2016). OWASP Benchmark for security automation
is an open test suite designed to evaluate the speed,
coverage, and accuracy of automated software
vulnerability detection tools and services. The XSS
test cases of OWASP Benchmark total of 455 test
cases, of which 246 test cases are true vulnerability
test cases and 209 test cases are false vulnerability
test cases. SPARROW v4.6_46(Fasoo Inc., 2016),
which has been commercialized by Fasoo Inc., was
used as a static analyzer. ZAP (Zed Attack Proxy)
v2.4.3 (OWASP, 2015) which is one of the OWASP
open source projects was used as a dynamic analyzer.
Z3str2 v1.0.0(Zheng et al., 2016) used for a string
constraint solver in the platform.

4.2 Experiment Result

When DAST was performed only the dynamic
analyzer, 71 vulnerabilities out of 246 true
vulnerabilities were discovered and the detection
rate was about 28.86%. On the other hand, the

Interaction Platform for Improving Detection Capability of Dynamic Application Security Testing

477

 Detections Detection Rate (Detections / Valid Vulnerabilities, %)

DAST only 71 28.86%

Suggestion 150 60.97%

Figure 6: OWASP Benchmark XSS vulnerabilities detection results of dynamic analyzer whether a platform is used.

Table 1: Http Request / Response to BenchmarkTest02134 whether a Platform is used.

 Http Request Http Response

DAST Only
vector=<SCRIPT>alert(“XSS!”);</SCRIPT
>

vector=<SCRIPT>alert(“XSS!”);<SCRIPT

Suggestion
vector=<SCRIPT>alert(“XSS!”);<SCRIPT>
aaabbbb

vector=<SCRIPT>alert(“XSS!”);<SCRIPT>
aaabbb

suggestion, which is the interaction of static and
dynamic analyzer through the platform, founded 150
vulnerabilities out of the true vulnerabilities. The
detection rate was about 60.87%. The suggestion
was improved by about 32.11% than only using
dynamic analyzer. Figure 6 presents this result as a
graph and sheet.

Figure 7: Benchmark02134 input value processing source
code containing parameter constraint.

 Figure 7 is input value processing source code of
BenchmarkTest02134 test case which has an input

parameter constraint. In line 10, a parameter, whose
name is vector, is invoked. The name is saved
according to the method in Section 3.2. Likewise, a
filter constraint on line 17 that the last character is
removed from the input string value is stored. The
static analyzer transmits a URL information, which
is /BenchmarkTest02134 in first line, the
vector parameter name, and the constraint to the
platform.

The http request messages which were sent from
the dynamic analyzer for attacking target URL and
the http response message to the request message are
shown in Table 1. When the platform was not used,
the dynamic analyzer assigned predefined attack
string,
<SCRIPT>alert(“XSS!”);</SCRIPT>, to
the vector parameter of http request message and
sent it to the target. But this attack string could not
bring about XSS vulnerability since the filter
constraint blocked this attack. So, this attack did not
detect XSS vulnerability.

Using the proposed method, the string constraint
solver in the platform generated
<SCRIPT>alert(“XSS!”);</SCRIPT>aaab
bbb, an attack string which avoids filter constraints,
with information that had been sent from the static
analyzer. This string were assigned vector parameter
as a payload and sent to the target. In the web
application, this string changed to
<SCRIPT>alert(“XSS!”);</SCRIPT>aaab
bb because the filter removed the last character b.

SECRYPT 2017 - 14th International Conference on Security and Cryptography

478

This modified string caused XSS so the dynamic
analyzer could detect XSS vulnerability.

Experimental results showed that using the
proposed approach, the dynamic analyzer could
detect XSS vulnerability because attack string sent
the dynamic analyzer circumvented the web
application filter constraints.

5 CONCLUSION

This paper suggested the platform which stores,
processes, and distributes information between each
analyzer on SDLC. And we verified that proposed
method improves the detection performance of the
dynamic analyzer by approximate 33% through the
experiment on XSS of OWASP Benchmark.

SAST has a limit that the static analyzer can
bring about FP (False Positive), which it detects
wrong vulnerabilities(Chess and McGraw, 2004).
Like a DAST, the problem of SAST can be solved
by interaction (Balzarotti et al., 2007). The platform
can provide the information not only sent from the
static analyzer but also sent form the dynamic
analyzer.

In the future, a research is needed to improve the
detection capability of the static analyzer by
breaking through the problem of SAST using the
information provided by the dynamic analyzer as a
platform.

ACKNOWLEDGEMENTS

This work was supported by Institute for
Information & communications Technology
Promotion (IITP) grant funded by the Korea
government (MSIP) (No.R0190-15-1099,
Development of an integrated management system
and a security testing system that enables interaction
between security vulnerability detection
technologies in development and operation phases of
web application).

REFERENCES

Fu, X., Li, C., 2010. A String Constraint Solver for
Detecting Web Application. In Proc. of International
Conference on Software Engineering and Knowledge
Engineering, pp.535-523.

Kiezun, A., Ganech, V., Guo, P. J., Hooimeijer, P., Emst,
D., 2009. Hampi: A solver for string constraints. In

Proc. of International Symposium on Testing and
Analysis, pp.105-116.

Balzarotti, M., Cova, V., Flmetsger, V., Jovanovic, N.,
Kirda, E., Kruegel, C., Vigna, G., 2008. Saner:
Composing static and dynamic analysis to validate
sanitization in web applications. In Proc. of the IEEE
Symposium on Security and Privacy.

OWASP, 2016. Benchmark. Available at
https://www.owasp.org/index.php/Benchmark.

OWASP, 2015. Zed Attack Proxy(ZAP). Available at
https://www.owasp.org/index.php/OWASP_Zed_Atta
ck_Proxy_Project.

Zheng, Y., Dolby, J., Tripp, O., Ganesh, V., Subramanian,
S., Berzish, M., Zhang, X., 2016. Z3str2: An Efficient
Solver for Strings, Regular Expressions, and Length
Constraints. Formal Methods in Systems Design,
invited paper at the Formal Methods in Systems
Design Journal, vol.50, pp.1-40.

Fu, X., Lu, X., Peltsverger, B., Chen, S., Qian, K., Tao, L.,
2007. A Static Analysis Framework for Detecting
SQL Injection Vulnerabilities. In Proc. of 31st Annual
International Computer Software and Applications
Conference, pp.519-531.

Fasoo Inc., 2016. SPARROW. Available at
http://www.fasoo.com/%EC%8A%A4%ED%8C%A8
%EB%A1%9C%EC%9A%B0-sparrow.

Chess, B., McGraw, G., 2003. Static analysis for security.
In Proc. of the IEEE Symposium on Security and
Privacy, pp.74-79.

Ernst, M. D., 2003. Static and dynamic analysis: synergy
and duality. In Proc. of the ICSE Workshop on
Dynamic Analysis, pp.24-27.

Russo, A., Sabelfeld, A., 2010. Dynamic vs. static flow-
sensitive security analysis. In Proc. IEEE Computer
Security Foundations Symposium, pp.186-199.

Balzarotti, D., Cova, M., Felmetsger, V., Vigna, G., 2007.
Multi-module vulnerability analysis of web-based
applications. In Proc. the 14th Computer and
Communications Security, pp.24-35.

Huang, Y.-W., Yu, F., Hang, C., Tsai, C.-H., Lee, D. T.,
Ku, S.-Y., 2004. Securing Web Application Code by
Static Analysis and Runtime Protection. In Proc. of
the 12th International World Wide Web Conference,
pp40-52.

Wassermann, G., Yu, D., Chander, A., Dhurjati, D.,
Inamura, H., 2008. Dynamic Test Input Generation for
Web Applications. In Proc. of International
Symposium on Software Testing and Analysis, pp.249-
260.

Emmi, M., Majumdar, R., Sen, K., 2007. Dynamic Test
Input Generation for Database Applications. In Proc.
of International Symposium on Software Testing and
Analysis, pp.151-162.

MacDona, N., 2012. Interactive Application Security
Testing. Available at http://blogs.gartner.com/
neil_macdonald/2012/01/30/interactive-application-
security-testing/

Interaction Platform for Improving Detection Capability of Dynamic Application Security Testing

479

