Proc. of the ACM SIGMOD Internat. Conf. on Man-
agement of Data, pages 1917–1923.
Gupta, A., Yang, F., Govig, J., Kirsch, A., Chan, K., Lai,
K., Wu, S., Dhoot, S. G., Kumar, A. R., Agiwal,
A., Bhansali, S., Hong, M., Cameron, J., and et al.
(2014). Mesa: Geo-Replicated, Near Real-Time, Scal-
able Data Warehousing. PVLDB, 7(12):1259–1270.
Hall, A., Bachmann, O., B
¨
ussow, R., G
˘
anceanu, S., and
Nunkesser, M. (2012). Processing a trillion cells per
mouse click. VLDB Endow., 5(11):1436–1446.
Khalifa, S., Elshater, Y., Sundaravarathan, K., Bhat, A.,
Martin, P., Imam, F., Rope, D., and et al. (2016). The
six pillars for building big data analytics ecosystems.
ACM Comput. Surv., 49(2):33:1–33:36.
Kimball, R. (2012). The evolving role of the enterprise data
warehouse in the era of big data analytics. White pa-
per, Kimball Group, pages 1–31.
Kune, R., Konugurthi, P. K., Agarwal, A., Chillarige, R. R.,
and Buyya, R. (2016). The anatomy of big data com-
puting. Softw. Pract. Exper., 46(1):79–105.
Lamb, A., Fuller, M., Varadarajan, R., Tran, N., Vandiver,
B., Doshi, L., and Bear, C. (2012). The vertica ana-
lytic database: C-store 7 years later. VLDB Endow.,
5(12):1790–1801.
Lamport, L. (2001). Paxos made simple. ACM SIGACT
News (Distributed Computing Column), 32(4):51–58.
Lee, G., Lin, J., Liu, C., Lorek, A., and Ryaboy, D. (2012).
The unified logging infrastructure for data analytics at
twitter. VLDB Endow., 5(12):1771–1780.
Leskovec, J., Rajaraman, A., and Ullman, J. D. (2014). Min-
ing of Massive Datasets. Cambridge University Press.
Madhuri, T. and Sowjanya, P. (2016). Microsoft azure
v/s amazon aws cloud services: A comparative study.
Journal of Innovative Research in Science, Engineer-
ing and Technology, 5(3):3904–3908.
Meijer, E., Beckman, B., and Bierman, G. (2006). Linq:
Reconciling object, relations and xml in the .net
framework. In Proc. of ACM SIGMOD International
Conference on Management of Data, pages 706–706.
Melnik, S., Gubarev, A., Long, J. J., Romer, G., Shivaku-
mar, S., Tolton, M., and Vassilakis, T. (2011). Dremel:
Interactive analysis of web-scale datasets. Communi-
cations of the ACM, 54:114–123.
Olston, C., Reed, B., Srivastava, U., Kumar, R., and
Tomkins, A. (2008). Pig latin: A not-so-foreign lan-
guage for data processing. In Proc. of SIGMOD Inter-
nat. Conf. on Management of Data, pages 1099–1110.
Pavlo, A., Paulson, E., Rasin, A., Abadi, D. J., DeWitt,
D. J., Madden, S., and Stonebraker, M. (2009). A
comparison of approaches to large-scale data analy-
sis. In Proc. of the ACM SIGMOD Intern. Conf. on
Management of Data, pages 165–178.
Pedro, E., Rocha, P., Luis, E. d. B., and Chris, C. (2015).
Cubrick: A scalable distributed molap database for
fast analytics. In Proc. of Internat. Conf. on Very
Large Databases (Ph.D Workshop), pages 1–4.
Philip Chen, C. and Zhang, C.-Y. (2014). Data-intensive
applications, challenges, techniques and technolo-
gies: A survey on big data. Information Sciences,
275(Complete):314–347.
Pike, R., Dorward, S., Griesemer, R., and Quinlan, S.
(2005). Interpreting the data: Parallel analysis with
sawzall. Sci. Program., 13(4):277–298.
Pkknen, P. and Pakkala, D. (2015). Reference architec-
ture and classification of technologies, products and
services for big data systems. Big Data Research,
2(4):166 – 186.
Stonebraker, M., Abadi, D., DeWitt, D. J., Madden, S.,
Paulson, E., Pavlo, A., and Rasin, A. (2010). Mapre-
duce and parallel dbmss: Friends or foes? Commun.
ACM, 53(1):64–71.
Sumbaly, R., Kreps, J., Gao, L., Feinberg, A., Soman, C.,
and Shah, S. (2012). Serving large-scale batch com-
puted data with project voldemort. In Proc. of the 10th
USENIX Conference on File and Storage Technolo-
gies, pages 18–18.
Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P.,
Anthony, S., Liu, H., Wyckoff, P., and Murthy, R.
(2009). Hive: A warehousing solution over a map-
reduce framework. VLDB Endow., 2(2):1626–1629.
Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P.,
Zhang, N., Anthony, S., Liu, H., and Murthy, R.
(2010). Hive - a petabyte scale data warehouse using
hadoop. In Proc. of Internat. Conf. on Data Engineer-
ing, pages 996–1005.
Warneke, D. and Kao, O. (2009). Nephele: Efficient paral-
lel data processing in the cloud. In Proc. of the 2Nd
Workshop on Many-Task Computing on Grids and Su-
percomputers, pages 8:1–8:10.
Wu, L., Sumbaly, R., Riccomini, C., Koo, G., Kim, H. J.,
Kreps, J., and Shah, S. (2012). Avatara: Olap for
web-scale analytics products. Proc. VLDB Endow.,
5(12):1874–1877.
Xin, R. S., Rosen, J., Zaharia, M., Franklin, M. J., Shenker,
S., and Stoica, I. (2013). Shark: Sql and rich analytics
at scale. In Proc. of ACM SIGMOD Internat. Conf. on
Management of Data, pages 13–24.
Xu, Y., Kostamaa, P., and Gao, L. (2010). Integrating
hadoop and parallel dbms. In Proc. of SIGMOD Inter-
nat. Conf. on Management of Data, pages 969–974.
Yang, F., Tschetter, E., L
´
eaut
´
e, X., Ray, N., Merlino, G.,
and Ganguli, D. (2014). Druid: A real-time analytical
data store. In Proc. of ACM SIGMOD Internat. Conf.
on Management of Data, SIGMOD ’14, pages 157–
168, New York, NY, USA. ACM.
Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., Mc-
Cauley, M., Franklin, M. J., Shenker, S., and Stoica, I.
(2012). Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Proc.
of Conf. on Networked Systems Design and Implemen-
tation, pages 15–28.
Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S.,
and Stoica, I. (2010). Spark: Cluster computing with
working sets. In Proc. of Conf. on Hot Topics in Cloud
Computing, pages 10–10.
Zhou, J., Bruno, N., Wu, M.-C., Larson, P.-A., Chaiken, R.,
and Shakib, D. (2012). Scope: Parallel databases meet
mapreduce. The VLDB Journal, 21(5):611–636.
ICSOFT 2017 - 12th International Conference on Software Technologies
162