which is proven to find an optimum if one exists,
this paper suggests an optimization algorithm that it-
eratively optimizes towards local minima and tries
to escape by penalizing the state by adding a Gaus-
sian kernel to the objective function. As the algo-
rithm depends on a starting point, a sampling method
is suggested that samples workcell components in a
sphere around the robot to maximize reachability of
the robot. The algorithm is tested against other global
optimization methods and a performance increase is
demonstrated on the two scenarios.
REFERENCES
ABB Robotics (2017). Robotstudio. http://new.abb.com/pr
oducts/robotics/robotstudio. [Online; accessed 10-
May-2017].
Adams, B. M., Coleman, K., Hooper, R. W., Khuwaileh,
B. A., Lewis, A., Smith, R. C., Swiler, L. P., Turin-
sky, P. J., and Williams, B. J. (2016). User Guidelines
and Best Practices for CASL VUQ Analysis Using
Dakota. Technical report, Sandia National Laborato-
ries (SNL-NM), Albuquerque, NM (United States).
Arabani, A. B. and Farahani, R. Z. (2012). Facility lo-
cation dynamics: An overview of classifications and
applications. Computers & Industrial Engineering,
62(1):408–420.
Barraquand, J., Langlois, B., and Latombe, J.-C. (1992).
Numerical potential field techniques for robot path
planning. IEEE Transactions on Systems, Man, and
Cybernetics, 22(2):224–241.
Barraquand, J. and Latombe, J.-C. (1991). Robot mo-
tion planning: A distributed representation approach.
The International Journal of Robotics Research,
10(6):628–649.
B
´
elisle, C. J., Romeijn, H. E., and Smith, R. L. (1993). Hit-
and-run algorithms for generating multivariate dis-
tributions. Mathematics of Operations Research,
18(2):255–266.
Buss, S. R. (2004). Introduction to inverse kinematics with
jacobian transpose, pseudoinverse and damped least
squares methods. IEEE Journal of Robotics and Au-
tomation, 17(1-19):16.
Cagan, J., Degentesh, D., and Yin, S. (1998). A sim-
ulated annealing-based algorithm using hierarchical
models for general three-dimensional component lay-
out. Computer-aided design, 30(10):781–790.
Costa, A. and Nannicini, G. (2014). RBFOpt: an open-
source library for black-box optimization with costly
function evaluations. Optimization Online, (4538).
FANUC (2017). ROBOGUIDE - FANUC Simulation Soft-
ware. http://robot.fanucamerica.com/products/vision-
software/roboguide-simulation-software.aspx. [On-
line; accessed 10-May-2017].
Gonc¸alves, J. F. and Resende, M. G. (2015). A biased
random-key genetic algorithm for the unequal area fa-
cility layout problem. European Journal of Opera-
tional Research, 246(1):86–107.
Guan, J. and Lin, G. (2016). Hybridizing variable neigh-
borhood search with ant colony optimization for solv-
ing the single row facility layout problem. European
Journal of Operational Research, 248(3):899–909.
Gueta, L. B., Chiba, R., Arai, T., Ueyama, T., and Ota, J.
(2009). Compact design of work cell with robot arm
and positioning table under a task completion time
constraint. In Intelligent Robots and Systems, 2009.
IROS 2009. IEEE/RSJ International Conference on,
pages 807–813. IEEE.
Gutmann, H.-M. (2001). A radial basis function method for
global optimization. Journal of global optimization,
19(3):201–227.
Holland, J. H. (1975). Adaptation in natural and artificial
systems. an introductory analysis with application to
biology, control, and artificial intelligence. Ann Arbor,
MI: University of Michigan Press.
Iversen, T. F. and Ellekilde, L.-P. (2017). Benchmarking
motion planning algorithms for bin-picking applica-
tions. Industrial Robot: An International Journal,
44(2):189–197.
Jones, D. R., Perttunen, C. D., and Stuckman, B. E. (1993).
Lipschitzian optimization without the lipschitz con-
stant. Journal of Optimization Theory and Applica-
tions, 79(1):157–181.
King, D. E. (2009). Dlib-ml: A machine learning
toolkit. Journal of Machine Learning Research,
10(Jul):1755–1758.
Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., et al.
(1983). Optimization by simulated annealing. Sci-
ence, 220(4598):671–680.
Koopmans, T. C. and Beckmann, M. (1957). Assign-
ment problems and the location of economic activi-
ties. Econometrica: journal of the Econometric Soci-
ety, 25(1):53–76.
LaValle, S. M. (1998). Rapidly-exploring random trees a
new tool for path planning. Tech. rep., Iowa State
Univ., Comp Sci. Dept.
Lim, Z. Y., Ponnambalam, S., and Izui, K. (2016). Na-
ture inspired algorithms to optimize robot workcell
layouts. Applied Soft Computing, 49:570–589.
Marsaglia, G. et al. (1972). Choosing a point from the sur-
face of a sphere. The Annals of Mathematical Statis-
tics, 43(2):645–646.
Morris, P. (1993). The breakout method for escaping from
local minima. In Proceedings of the Eleventh National
Conference on Articial Intelligence, volume 93, pages
40–45.
Park, M. G. and Lee, M. C. (2003). A new technique
to escape local minimum in artificial potential field
based path planning. KSME international journal,
17(12):1876–1885.
Petersen, H. G. and Ellekilde, L.-P. (2011). Modeling
motions of a KUKA KR30 robot. Technical report,
The Maersk Mc-Kinney Moller Institute, University
of Southern Denmark.
Powell, M. J. (2009). The BOBYQA algorithm for bound
constrained optimization without derivatives. Techni-
ICINCO 2017 - 14th International Conference on Informatics in Control, Automation and Robotics
120