4 CONCLUSION
Geometric segment models combined with a non-
uniform density function enable a very accurate BSP
estimation. If anthropometric dimensions defining the
shapes of these models are determined using three-
dimensional body scanning technology, the overall
parameter estimation process can be performed in
some minutes. The semi-automated approach as
described decreases time for data collection, whilst
maintaining body segment accuracy when compared
to the manual method.
REFERENCES
Ackland, T., Henson, P., Bailey, D., 1988. The uniform
density assumption: Its effect upon the estimation of
body segment inertial parameters. International
Journal of Sports Biomechanics, 4, 146-155.
Baca, A., 1996. Precise determination of anthropometric
dimensions by means of image processing methods for
estimating human body segment parameter values.
Journal of Biomechanics, 29(4), 563-567.
Cheng, C.-K., Chen, H.-H., Chen, C.-S., Lee, C.-L., Chen,
C.-Y, 2000. Segment inertial properties of Chinese
adults determined from magnetic resonance imaging.
Clinical Biomechanics, 15(8), 559-566.
Cizgin, P., 2013. Automatisierte Bestimmung
anthropometrischer Segmentparameter des
Hominoidmodells von Hatze mittels 3D-
Laserscantechnologie. Master thesis, Medical
University Vienna, 2013.
Clarkson, S., Choppin, S., Hart, J., Heller, B., Wheat, J.,
2012. Calculating body segment inertia parameters
from a single rapid scan using the Microsoft Kinect. In
Proc 3
rd
International Conference on 3D Body
Scanning Technologies, Lugano, Switzerland, 16.-17
October 2012.
Clauser, C. E., McConville, J. T., Young, J. W., 1969.
Weight, volume and center of mass of segments of the
human body. AMRL Technical. Report, Wright-
Patterson Air Force Base, Ohio.
Crosnier, P., Gautier, M., Gonzáles, A., Venture, G., 2016.
Optimal Exciting Dance for Identifying Inertial
Parameters of an Anthropomorphic Structure. IEEE
Transactions on Robotics, 32(4), 823-836.
Dempster, W.T., 1955. Space requirements for the seated
operator. Wright Air Development Center. Wright-
Patterson Air Force Base, Dayton, OH, WADC Tech.
Rep. TR-55-159.
Díaz-Rodríguez, M., Valera, A., Page, A., Besa, A., Mata,
V., 2016. Dynamic Parameter Identification of Subject-
Specific Body Segment Parameters Using Robotics
Formalism: Case Study Head Complex. ASME.
Journal of Biomechanical Engineering,
138(5):051009-051009-8.doi:10.1115/1.4032997.
Drillis, R., Contini, R., 1966. Body Segment Parameters.
New York, New York: Office of Vocational
Rehabilitation, Report No.: No. 1166-03.
Durkin, J. L., Dowling, J. J., Andrews D. M., 2002. The
measurement of body segment inertial parameters using
dual energy X-ray absorptiometry. Journal of
Biomechanics, 35(12), 1575-1580.
Erdmann, W. S., 1997. Geometric and inertial data of the
trunk in adult males. Journal of Biomechanics, 30(7),
679-688.
Erdmann, W. S., Kowalczyk, R., 2015. A personalized
method for estimating centre of mass location of the
whole body based on differentiation of tissues of a
multi-divided trunk. Journal of Biomechanics, 48(1),
65-72.
Hanavan, Jr., E. P., 1964. A mathematical model of the
human body (No. AFIT-GA-PHYS-64-3). Air Force
Aerospace Medical Research Lab Wright-Patterson
Afb Oh.
Hatze, H., 1979. A model for the computational
determination of parameter values of anthropomorphic
segments. CSIR Techn. Report TWISK 79, Pretoria.
Hatze, H., 1980. A mathematical model for the
computational determination of parameter values of
anthropomorphic segments. Journal of Biomechanics,
13 (10), 833-843.
Hatze, H., 1983. Computerized optimization of sports
motions: an overview of possibilities, methods and
recent developments. Journal of Sports Science, 1, 3-
12.
Lu, J.-M., Wang, M.-J. J., 2008. Automated anthropometric
data collection using 3D whole body scanners, Expert
Systems with Applications, 35, 407-414.
Nigg, B. M., Herzog, W. (Eds.), 1999. Biomechanics of the
muskulo-skeletal system. 2nd Edition. Chichester: John
Wiley & Sons.
Peyer, K. E., Morris, M., Sellers, W. I., 2015. Subject-
specific body segment parameter estimation using 3D
photogrammetry with multiple cameras,
PeerJ:e381,DOI 10.7717/peerj.831.
Rao, G., Amarantini, D., Berton, E., Favier, D., 2006.
Influence of body segments’ parameters estimation
models on inverse dynamics solutions during gait,
Journal of Biomechanics, 39 (8), 1531-1536.
Rossi, M., Lyttle, A., El-Sallam, A., Benjanuvatra, N.,
Blanksby, B., 2013. Body segment inertial parameters
of elite swimmers using DXA and indirect methods.
Journal of Sports Science and Medicine, 12(4), 761-
775.
Schiffl, K., 2011. Bestimmung von Hominoidsegmenten aus
3D-Bodyscannerdaten. Master thesis, Technical
University Vienna, 2011.
Sheets, A.L., Corazza, S., Andriacchi, T. P., 2010. An
automated image-based method of 3D subject-specific
body segment parameter estimation for kinetic analyses
of rapid movements. Journal of Biomechanical
Engineering, 132 (1), 011004.
Son, J., Ryu, J., Kim, J., Kim, Y., 2014. Determination of
inertial parameters using a dynamometer. Bio-Medical
Materials and Engineering 24, 2447-2455.