![](bg6.png)
ropean Journal Operational Research, 181(4):1370–
1395.
Fontes, D. B. M. M., Fontes, F. A. C. C., and Roque, L. A.
(2014). Optimal Control Formulations for the Unit
Commitment Problem. Dynamics of Information Sys-
tems: Computational and Mathematical Challenges.
C. Vogiatzis, J. L. Walteros , P. M. Pardalos (eds).
Springer.
Fontes, F. A., Fontes, D. B., and Roque, L. A. (2012).
An optimal control approach to the unit commitment
problem. In CDC - Conference on Decision and Con-
trol, pages 7069–7074, Maui, USA.
Frangioni, A., Gentile, C., and Lacalandra, F. (2008). Solv-
ing unit commitment problems with general ramp
constraints. Electrical Power and Energy Systems,
30(5):316–326.
Frangioni, A., Gentile, C., and Lacalandra, F. (2009).
Tighter Approximated MILP Formulations for Unit
Commitment Problems. IEEE Transactions on Power
Systems, 24(1):105–113.
Hobbs, W., Hermon, G., Warner, S., and Sheble, G. B.
(1988). An enhanced dynamic programming approach
for unit commitment. IEEE Transactions on Power
Systems, 3(3):1201–1205.
Jenkins, L. and Purushothama, G. (2003). Simulated an-
nealing with local search-a hybrid algorithm for unit
commitment. IEEE Transactions on Power Systems,
18(1):1218–1225.
Kaya, C. and Noakes, J. (2003). A computational method
for time-optimal control. Journal of optimization the-
ory and applications, 117:69–92.
Ma, H. and Shahidehpour, S. (1998). Transmission-
constrained unit commitment based on Benders de-
composition. International Journal of Electrical
Power and Energy Systems, 20(4):287–294.
Patra, S., Goswami, S., and Goswami, B. (2009). Fuzzy and
simulated annealing based dynamic programming for
the unit commitment problem. Expert Systems with
Applications, 36(3):5081–5086.
Rajan, C. and Mohan, M. (2004). An evolutionary
programming-based tabu search method for solving
the unit commitment problem. IEEE Transactions on
Power Systems, 19(1):577–585.
Roque, L., Fontes, D., and Fontes, F. A. C. C. (2011). A
Biased Random Key Genetic Algorithm Approach for
Unit Commitment Problem. Lecture Notes in Com-
puter Science, 6630(1):327–339.
Roque, L. A. C., Fontes, D. B. M. M., and Fontes, F. A.
C. C. (2014). A Hybrid Biased Random Key Genetic
Algorithm Approach for the Unit Commitment Prob-
lem. Journal of Combinatorial Optimization, 28:140–
166.
Sager, S. (2005). Numerical methods for mixed integer opti-
mal control problems. Ph.d. thesis, Der andere Verlag,
Tonning, Lubeck, Marburg, URL http://mathopt.de/
PUBLICATIONS/Sager2005.pdf.
Salam, S. (2007). Unit commitment solution methods. In
Proceedings of World Academy of Science, Engineer-
ing and Technology, volume 26, pages 600–605.
Saravanan, B., Siddharth, D., Sikri, S., and Kothari, D.
(2013). A solution to the unit commitment problem
- a review. Frontiers in Energy, 7(2):223 – 236.
Simopoulos, D., Kavatza, S., and Vournas, C. (2006).
Unit commitment by an enhanced simulated anneal-
ing algorithm. IEEE Transactions on Power Systems,
21(1):68–76.
Tuffaha, M. and Gravdahl, J. (2016). Discrete State-Space
model to solve the Unit Commitment and Economic
Dispatch problems. Energy Systems, pages 1–23.
Zhao, B., Guo, C., Bai, B., and Cao, Y. (2006). An
improved particle swarm optimization algorithm for
unit commitment. International Journal of Electrical
Power & Energy Systems, 28(7):482–490.
Zhuang, X., Luh, P., Yan, H., and Amalfi, J. A. (1992). An
optimization-based method for unit commitment. In-
ternational Journal of Electrical Power and Energy
Systems, 14(1):9–17.
New Formulations for the Unit Commitment Problem - Optimal Control and Switching-Time Parameterization Approaches
331