
Cryptographic Service Providers in Current Device Landscapes: An
Inconvenient Truth

Florian Reimair1, Johannes Feichtner2, Dominik Ziegler2, Sandra Kreuzhuber3 and Thomas Zefferer4

1Secure Information Technology Center - Austria (A-SIT), Graz, Austria
2Institute for Applied Information Processing and Communications, Graz University of Technology, Austria

3PrimeSign GmbH, Graz, Austria
4A-SIT Plus GmbH, Vienna, Austria

Keywords: Applied Cryptography, Cryptographic Service Providers, Cloud.

Abstract: Current application and device landscapes became a harsh environment for data security. Multi-device users
enjoy the convenience and efficiency of modern distributed applications in a highly heterogeneous device
landscape. However, today’s data protection mechanisms fell behind in taking care of some current use cases
and application scenarios. We perform a case study and an in-depth security analysis and risk assessment
on a simplified set of three different cryptographic service provider types; software, hardware, and remote.
Our case study shows that different provider types can change application characteristics considerably. Our
security analysis and risk assessment shows how different provider types can influence the security properties
of a set of use cases. We found that no one provider can excel for every cryptographic task. Based on these
findings we formulate a list of features which we believe are crucial to get the data protection mechanisms
up to speed again so that everyone can again benefit from data security even in a world of highly distributed
applications and data.

1 INTRODUCTION

The current heterogeneous device landscape became a
harsh environment for privacy and data security. Ap-
plications need to run on a variety of different devices,
data is stored in the cloud, and dynamic distributed
computing in personal area networks is within reach
(Reiter and Zefferer, 2015). The need for data secu-
rity i.e. integrity, confidentiality, availability of data
becomes more apparent as the attack surface grows
with the number of devices involved.

However, today’s data security does not scale
well with the current evolution of computing envi-
ronments. Personal mobile devices (smart phones,
tablets, smart watches, etc.) have limited resources in
terms of computing power and battery life, browsers
hardly have access to hardware-assisted key storage
for handling sensitive data, and, among others, im-
plementations of the required cryptographic methods
may not be available for the device at hand. Be-
side the limitations brought up by devices, applica-
tions and use cases have evolved as well. Examples
are having data available on every device of a mod-

ern (multi-device) user. Cryptography is required on
almost every device in almost every situation, even
when cryptographic keys cannot be appropriately pro-
tected by the device at hand.

Industry and researchers already took on the
challenge of tackling shortcomings in protecting
data in current device and application environments
(Reimair, 2014). Different cryptographic APIs exist,
for local or remote use, having different ways of per-
sisting cryptographic keys. Authentication needs of
remote APIs are often handled in a nonstandard man-
ner and hence, hinder flexibility and interoperability.
Hardware tokens are available which on the one hand
can reasonably protect cryptographic primitives, but,
on the other hand, often rely on interfaces that are not
available on every device. These approaches and so-
lutions mostly only target narrow use cases, may only
work safely given a set of prerequisites, and/or do not
even use cryptography in order to reach their goals.

In this work, we elaborate on the challenges and
issues raised against cryptographic service providers
by current applications. First, we reduce avail-
able technology to three types of cryptographic ser-

Reimair, F., Feichtner, J., Ziegler, D., Kreuzhuber, S. and Zefferer, T.
Cryptographic Service Providers in Current Device Landscapes: An Inconvenient Truth.
DOI: 10.5220/0006466603670374
In Proceedings of the 14th International Joint Conference on e-Business and Telecommunications (ICETE 2017) - Volume 4: SECRYPT, pages 367-374
ISBN: 978-989-758-259-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

367



vice providers namely software providers, hardware
providers and remote cryptographic service providers.
We then discuss how different provider types can
change the characteristics of a single application. We
highlight that current application environments can-
not guarantee a certain type of cryptographic service
provider and an application might change its char-
acteristics without the developer’s or the user’s con-
sent. Last but not least, we provide an in-depth
security analysis and risk assessment of the three
provider types against the use cases specified for the
W3C Web Cryptography API (Halpin, 2014a).

We found that in today’s heterogeneous device
landscape none of the evaluated cryptographic service
provider types can excel in every use case. We list
features, shortcomings and issues with cryptographic
service provider types available today and discuss
candidates which, after receiving some work, might
be capable of bringing data security back to the mod-
ern user. We conclude that applications and devices
need means of using the most suitable cryptographic
service provider type and implementation for a task at
hand. Only then can applied cryptography catch and
keep up with the fast evolution of applications and de-
vice environments in terms of data security.

The remainder of his work is structured as follows.
Section 2 starts by discussing related work. Section 3
reduces existing solutions to three different crypto-
graphic service provider types, discusses the capa-
bilities and features of each type and how they can
influence the characteristics of an application. Sec-
tion 4 evaluate the representative set of three differ-
ent provider concepts after their impact on the secu-
rity of modern use cases. Section 5 discusses missing
features, candidates and the ultimate goal. Section 6
concludes the work.

2 RELATED WORK

Although the topic at hand seems to be more impor-
tant then ever, not much has been done to address
the struggle of cryptographic service providers in cur-
rent applications. There are, however, evaluations and
comparisons of specific platforms or specific types of
services and work has also been done on the topic of
usability.

A prevalent example of device-specific evalua-
tions are mobile devices. Researchers have created
powerful frameworks for analysing mobile applica-
tions in order to expose their implementation flaws
or their malicious purpose (Baumgärtner et al., 2015;
Backes et al., 2016). Studies about misuse of cryp-
tography by design have been created (Egele et al.,

2013), mobile operating systems have been scanned
for features and shortcomings in providing security
to the user (Mohamed and Patel, 2015). Other work
presents concepts of leveraging hardware-assisted se-
curity modules (Santos et al., 2014).

Cloud security is a well-covered topic as well.
Surveys list issues and solutions (Fernandes et al.,
2014; Ren et al., 2012) while innovative uses of
cloud environments for better security are proposed
as well (Varadharajan and Tupakula, 2014). Further-
more, frameworks have been created to foster secure
cloud computing (Chang et al., 2016; Chang and Ra-
machandran, 2016).

Work has also been done in less popular areas.
Hardware security modules (HSMs) have been com-
pared and evaluated (Reimair, 2011), cloud signature
services have been discussed (Reimair, 2014). Even
topics like usability of cryptography (Gutmann and
Grigg, 2005) and studies about why cryptographic
software fails (Lazar et al., 2014) have been created.

However, to the best of our knowledge, no com-
parison of cryptographic service provider types with
respect to security and applicability for certain use
cases has been done so far. We believe that only so
we can address the struggle of cryptographic service
providers in current applications.

3 CRYPTOGRAPHIC SERVICE
PROVIDERS ARE DIVERSE

In this section, we discuss the capabilities and features
of cryptographic service providers and how they can
influence the characteristics of an application. First,
we give a basic definition of what a cryptographic
service provider is in this context. Next, we classify
providers into three different types in order to evaluate
and compare them. Based on this simplification, we
discuss on how one application can alter its character-
istics according to the cryptographic service provider
being used.

3.1 Definition

A cryptographic service provider provides a ready to
use implementation of cryptographic methodologies
i.e. algorithms, protocols, etc. Some providers can do
only basic cryptographic operations like encrypting
and decrypting data, others provide protocol imple-
mentations and/or can generate cryptographic keys,
some can persist cryptographic keys.

Cryptographic service providers come in different
shapes and security levels. FIPS140-2 (National In-
stitute of Standards and Technology, 2001) provides

SECRYPT 2017 - 14th International Conference on Security and Cryptography

368



some basic reference. Providers can be software-only
i.e. they are a piece of software, a library, that pro-
vides cryptographic methods. Hardware providers,
also known as hardware security modules (HSMs),
are, in general, distinct device which interfaces with
PCs or alike via common interfaces like USB or Eth-
ernet. Some HSMs feature strong protection against
attacks like erasing the persisted cryptographic keys
when under physical attack. The level of security a
cryptographic service provider can achieve depends
on how easy it is to retrieve cryptographic keys, inject
faults, or abuse keys.

3.2 Three Types

For this work, we consider three different types of
cryptographic service providers – software, hard-
ware, and remote providers. Software and hardware
providers represent traditional implementations and
are aligned with the FIPS140-2 standard.

Software-only providers represent the cheapest
but also least secure variant of providers. They are
broadly available, are easy to deploy and easy to
use. hardware-assisted providers are capable of pro-
viding significantly more security, are traditionally
much more expensive and require more efforts to
setup and operate. For our work, we consider hard-
ware providers to offer the highest level of secu-
rity. Additionally, we add remote cryptographic ser-
vice providers to the set. We consider remote cryp-
tographic service providers to be cryptographic ser-
vice providers which can be accessed via the Internet.
Consequently, these providers can be used by multi-
ple devices, therefore allow for a sort of key mobility
and key sharing and therefore, enable new use cases
especially in current application landscapes. For this
work we assume that remote providers offer the high-
est security level and are under the sole control of the
user.

3.3 Showcase

Our showcase application offers basic cryptographic
functionality, i. e. encryption and decryption. A user
can encrypt or decrypt data using standardised en-
cryption schemes. After a successful encryption or
decryption process, the application allows for storing
the encrypted/decrypted data in the cloud.

An architectural overview of the application is
given in Figure 1. The user interacts with the ap-
plication. The application code handles the data by
loading and storing it. Furthermore, the application
makes use of a cryptographic service provider to ac-
tually encrypt/decrypt the data.

Figure 1: Demonstrator Architecture.

The application is therefore able to perform three
use cases by simply changing the cryptography
provider. First, the application succeeds in doing en-
crypted local and remote storage in a single-device
and single-user environment (Figure 2). The user

Figure 2: Use case: local key.

launches the application on his smart phone and is
able to encrypt the data prior to storing it to disk or
to a cloud storage provider. The user can use the
hardware cryptographic provider of his modern smart
phone. The same use case can be accomplished with
a software provider yielding a lower security level.

Next, the application succeeds in adding multiple
devices to the single-user use case discussed above
(Figure 3). Without changing the application, the ap-

Figure 3: Use case: remote key.

plication enables a cloud storage use case where the
user can read and modify data from every device of
his while maintaining data security. That feature be-
comes available by only enable the user to select a
remote cryptographic service provider.

And last but not least, the application can utilise
key sharing capabilities of a remote cryptography ser-
vice provider to enable the use case of data sharing
for multiple users and multiple devices while keeping
the data secure and confidential.

The case study indicates that different crypto-
graphic service providers do change the characteris-
tics of an application considerably. Therefore, inter-
changeable cryptographic service providers can lead
to new features and more secure computing.

3.4 Headache!

What seems like a feature swiftly becomes bad news
as soon as we look at the heterogeneity of current

Cryptographic Service Providers in Current Device Landscapes: An Inconvenient Truth

369



devices and their provider implementations. In this
section we discuss two examples of how unforeseen
provider types can compromise security.

Java’s Cryptography Extension (JCE) features a
provider factory where the developer can either pick
a provider or let the factory choose one depending on
system configuration. The issue therefore already ex-
isted back then. However, hardware providers for PCs
and servers need special treatment and corresponding
applications anyhow pick their providers accordingly.
Furthermore, current use cases outgrew the interfaces
provided by the JCE and therefore, applications had
to be customised for special providers and their spe-
cial capabilities.

Current applications, however, face a highly het-
erogeneous device landscape where the issue be-
comes very real. A representing example is the
W3C Web Cryptography API for browsers (Halpin,
2014a; Halpin, 2014b). The issue of unforeseen cryp-
tographic service provider types/implementations in
web applications is very visible because current web
applications run on a multitude of different devices
and browsers. Different devices likely have different
cryptographic service providers available and a sensi-
tive cryptographic key might be properly protected on
one device but not on another.

All in all, each security provider implementation
has its unique features. In the past this did hardly
pose a problem as users mainly used a single PC and
servers had their physical place in the world. In the
modern world, however, the device landscape grew
more heterogeneous and users started to use a mul-
titude of devices. We believe that today one can
hardly anticipate which security provider implemen-
tation will be available on the deployment site.

4 SECURITY ANALYSIS AND
RISK ASSESSMENT

The discussion of the aforementioned representative
case study showed that – albeit using the same cryp-
tographic methodologies – different implementation
concepts (i. e. software, hardware, and remote) cause
vastly different application characteristics in terms of
data security but also achievable functionality. In-
spired by these findings, we implemented and eval-
uated the representative set of three different provider
concepts after their impact on the security of an appli-
cation.

We will derive assets and respective operations
from the use cases defined by the Web Cryptography
API. Next, we define threats against these assets. We
then discuss residual risks. Some general assumptions

limit the scope of the evaluation. We then draw con-
clusions on the results of our security analysis.

4.1 Demonstrator Implementation

Our proof-of-concept web application utilises W3C’s
Web Cryptography API. The enclosed provider fac-
tory architecture is realised as a JavaScript library and
offers three providers which conform to W3C’s Web
Cryptography API implemented using the JavaScript
technology as well. These providers are the browser
implementation itself (representing software cryp-
tographic service providers), a plugin for Apache
Cordova1 (representing hardware providers), and the
CrySIL infrastructure (Reimair et al., 2016) (repre-
senting remote providers).

4.2 Assumptions

We assume, that the provider architecture code is cor-
rect and correctly delivered. The same applies to the
provider implementations. Client platforms are con-
sidered as honest but curious.

4.3 Use cases

The W3C has carefully selected a set of cryptographic
operations and algorithms that should be supported
by implementations of the Web Cryptography API.
These operations build around use cases found in web
apps:

Multi-factor Authentication (UC1). Web appli-
cations may require the user to prove that she has ac-
cess to some cryptographic primitive. Usually, a chal-
lenge has to be decrypted during authentication fol-
lowed by signing the decrypted challenge.

Protected Document Exchange (UC2). Web ap-
plications that enable users to exchange data may of-
fer mechanisms for ensuring that only legitimate re-
ceivers gain access to the data. Wrapping content
encryption keys using the public key of the receiver
(a. k. a. hybrid encryption) is often used.

Cloud Storage (UC3). An increasing number of
users and services store their data within the cloud. In
order to protect the confidentiality of their data, web
applications require methods for encrypting data.

Document Signing (UC4). Web applications may
allow users to electronically sign a document in order
to express consent.

Data Integrity Protection (UC5). New storage
mechanisms introduced in HTML5 allow web appli-
cations to cache data locally for later use. Therefore,

1https://cordova.apache.org

SECRYPT 2017 - 14th International Conference on Security and Cryptography

370



web applications may require mechanisms for ensur-
ing that data has not been modified.

Secure Messaging (UC6). The increasing use
of technologies that enable direct browser-to-browser
communication yields to the need of protect ex-
changed messages. Therefore, web applications re-
quire methods for negotiating shared encryption keys
and means for detecting modifications on the trans-
mitted data.

JavaScript Object Signing and Encryption
(UC7). The IETF JavaScript Object Signing and En-
cryption (JOSE) Working Group provides specifica-
tions for signing and encrypting data using the JSON
data structure.

4.4 Assets and Operations

In order to derive assets and subsequent operations,
we discuss each use case. Aside from the classic
single-device user environment and subsequent usage
scenarios, we discuss the modern multi-device user
environment as well.

The multi-factor authentication use case (UC1) re-
quires the user to decrypt and/or sign data in order to
substantiate his own identity. As soon as the required
cryptographic primitive is compromised, the authenti-
cation is rendered useless. This use case therefore de-
pends on a signing key asset (A1) and probably on a
decryption key asset (A2). The subsequent operations
are signature creation (OP1) and decryption (OP2).

Given the data is protected by hybrid encryption
schemes for the protected document exchange use
case (UC2), the use case depends on the following as-
sets: the payload data itself (A3), a content encryption
key (A2) for bulk encryption, and key wrapping key
(A4). The subsequent operations are encrypt/decrypt
(OP3/OP2) and key wrapping (OP4).

To secure the data by the means of cryptography
for the cloud storage use case (UC3), the data has to
be encrypted before it is sent to the cloud. Therefore,
the data asset (A3) is accompanied again by a content
encryption key (A2). The subsequent operations are
encrypt/decrypt (OP3/OP2).

Both use cases, cloud storage as well as protected
document exchange, are more complex in the multi-
device user environment. The user wants to access her
data from every one of her devices. Therefore, we add
key mobility (OP5) to the lists of operations. Recent
advances in the field suggest that sharing a key might
in some cases be better than managing keys for every
individual of a system. Hence, we add key sharing
(OP6) to the list of operations.

The document signing use case (UC5) obviously
requires for a signing key (A1) with the subsequent

operation of signature creation (OP1). The data in-
tegrity protection use case (UC5) adds the signature
verification operation (OP7) to the list of operations.

Last but not least, the secure messaging use case
(UC6) is about session key agreement and therefore
requires signing keys (A1) and the subsequent signing
operation (OP1) as well as the verify operation (OP7).
A user may want to maintain his identity across his
different devices and therefore require for the key mo-
bility operation (OP5) as well.

The JavaScript Object Signing and Encryption use
case (UC7) requires signature creation/verification
(OP1/OP7) as well as data encryption and decryption
(OP3 and OP2) with hybrid encryption schemes and
thus, key wrapping (OP4).

We consider operations which use these assets
as derived assets. Common operations are the basic
cryptographic operations like encryption and decryp-
tion (OP3 and OP2) and signature creation and verifi-
cation (OP1 and OP7). Signature operations do need
data fingerprinting i. e. hashes (OP8). Advanced op-
erations are key wrapping operations (OP4) as well as
key mobility and key sharing (OP5 and OP6).

4.5 Threats

The assets and subsequent operations above lead to
five distinct threats and result in a total of three differ-
ent risks.

The first two threats are loss of data/keys (T1/T2)
either through physical loss or loss of integrity. Loss
of data and/or data integrity and loss of key and/or key
integrity renders the data corrupt. The user therefore
suffers from a denial of service (DoS) situation, the
attacker, however, cannot abuse the data. Therefore,
we rate the severity of the DoS risk (R1) as low.

The second two threads concern data or key theft.
While data or key theft might not be noticed by the
user at all, the attacker can use the obtained informa-
tion for her cause. For the data theft threat (T3), we
rate the severity as medium because even as there is
a breach of security and privacy, only a specific set
of data is disclosed (R2). For key theft (T4), there
are two options. First, given the compromised key is
a CEK (A2), the severity of the data disclosure risk
(R2) is high, because the key could be used for multi-
ple sets of data. Second, given the compromised key
is a singing key (A1), an attacker can use the key to
impersonate the key owner. We rate the imperson-
ation risk (R3) as high as well.

The last threat is about key authenticity (T5).
When an attacker can swap a key for a key of her own,
he can perform T1 to T4 without being noticed.

Cryptographic Service Providers in Current Device Landscapes: An Inconvenient Truth

371



4.6 Evaluating the Software Provider

Browsers, in general, are pieces of software and soft-
ware has never been particularly good in keeping se-
crets. We evaluate the threats against a browser im-
plementation of the W3C Web Cryptography API,
namely the Firefox web browser, version 39.

The Web Cryptography API suggests that the
HTML5 Indexed Database is the place to persist
freshly created key data. However, at least with Fire-
fox 39, the Indexed Database is stored in a file on disk
and we succeeded in extracting sensitive key data.
Literature lists attacks on the Indexed Database (Ki-
mak et al., 2014; Kimak et al., 2012) as well.

Therefore, we rate any cryptography in need for
sensitive key data as being easily attacked and the cor-
responding risks to be high. Only the hashing opera-
tion (O8) can be assumed to be secure. The key loss
and therefore data loss risks (R1) are likely to occur
because clearing the browser cache removes the cryp-
tographic keys for good. This is particularly cumber-
some with the use cases cloud storage (UC3) or signa-
ture creation (UC4). The risk of impersonation (R3)
is high due to the fact that keys are not stored securely
and might be tampered with. For a practicability rat-
ing, i. e. performance and operational overhead, all
operations except for key mobility and key sharing
(OP5 and OP6) can be implemented very efficiently.

4.7 Evaluating the Hardware Provider

A hardware-assisted cryptographic service provider
boosts the security of sensitive data considerably. Our
Cordova provider uses the key chain implementations
of current smart phones. These implementations of
current phones tend to rely on secure elements. They
are designed to keep the sensitive data save in case of
malware and even if the device is stolen.

These features render key and data disclosure risks
(R2) as well as key impersonation risks (R3) almost
impossible. The risk of losing keys and data (R1) is
low as well. Since the key data is held locally, the
practicability ratings are similar to the software im-
plementation. All operations, except for the key mo-
bility and key sharing operations (OP5 and OP6), can
be implemented efficiently.

4.8 Evaluating the Remote Provider

CrySIL represents off-device cryptographic services
providers that operate as web-accessible services
with key usage constraints based on authentication
methodologies. We assume that the crypto service of
CrySIL operates on a HSM and therefore assume any

operation to be hard to attack in general. However, we
consider the risk of losing the key (R1) as the weakest
point of the system because of DoS attacks. An un-
reachable service results in an unusable key and thus
leads to undecryptable data.

As for practicability, we consider a remote web-
service to be less practical as a local solution. That
is simply because sending commands and data via the
web takes its time. We consider cases of bulk data
processing, as it is done by content encryption (OP3)
and hashing (OP8) as hardly feasible. However, re-
mote service do have their strength when it comes to
key mobility (O5) and key sharing (O6).

4.9 Summary

A tabular overview of all operations and the likeli-
hood of the respective risks along with a practicability
rating is given in

Table 1: Risk assessment.

Browser Cordova CrySIL
R1 R2 R3 p R1 R2 R3 p R1 R2 R3 p

OP1 - - + + + + + + o
OP2 - + + + o o
OP3 - + + + + -
OP4 - - + + + + o + o
OP5 - - - + + - + + +
OP6 - - - + + - + + +
OP7 + + o
OP8 + + + + + -

Table 1. The likelihood rating is given as Rx ∈
{−,o,+} corresponding to low, medium, and high
likelihood of having to deal with the risk. The prac-
ticability rating p follows the values p ∈ {−,o,+} as
bad, medium, and good practicability, respectively.

Our evaluation highlights that no provider is per-
fect. Each of the evaluated providers can perform
different operations with different practicability and
different security levels.In detail, the software secu-
rity provider is particularly good in processing bulk
data as required by the hashing (O8) and bulk encryp-
tion (O3) operations. Protecting sensitive key data is
done best by a hardware-assisted cryptographic ser-
vice provider. And finally, whenever key mobility
(O5) and key sharing (O6) is required, a remote cryp-
tographic service provider is the natural way.

SECRYPT 2017 - 14th International Conference on Security and Cryptography

372



5 MIND THE GAP!

The evaluations made in the previous sections make
clear that no one distinct cryptographic service
provider implementation can excel in every crypto-
graphic task and use case. Furthermore, unforeseen
provider implementations/types can change features
and security of an application considerably. In other
words, there is a gap between what current method-
ologies of applied cryptography can cope with and
what is needed to properly serve the modern user’s
data protection needs.

5.1 Missing Features

First and foremost, an application needs to use the
most suitable cryptographic service provider type and
implementation for a task at hand. In short, key
protection capabilities of different platforms and de-
vices vary and subsequently make some devices more
suitable for handling sensitive keys than others. We
believe that a modular interoperability layer which
is flexible in terms of software technology, operat-
ing system, connectivity and of course, cryptographic
features can close this gap.

Second, modern multi-device users need to ac-
cess their cryptographic keys wherever they need
them—be it on a smart phone or on a desktop PC.
Only so can users still benefit from the convenience
of current applications and service while maintain-
ing proper data security. However, current technology
hardly allows for this kind of flexibility.

Third, we believe that the user deserves to de-
cide which cryptographic service provider she wants
to use. With such a feature in place, a user can use her
remote keys in an arbitrary application and thus, push
her data security level. She can also decide to spend
more time doing cryptography rather than offload her
data to an untrusted service to just save a few seconds.
Users themselves might not (jet) use the feature, how-
ever, once the feature is there, a policy system can be
established. Developers can then install policies to
cope with selecting the most suitable cryptographic
service provider for a task at hand while leaving the
user the chance to change the selection. Such func-
tionality would benefit the user by being able to rely
on developer defaults as we do today but change the
selection if necessary.

Last but not least, it is crucial for applied cryp-
tography to be easy to use for users and developers.
For the user, a solution needs to be completely trans-
parent during everyday use. Interaction should only
be necessary either for authentication purposes or for
changing settings. For developers, we need means

of transparently handling multiple different crypto-
graphic providers without the the need for changing
existing cryptographic APIs. Creating a new API
might just lead to yet-another crypto-API which hin-
ders broad acceptance.

We believe that these four features would greatly
support applied cryptography in its attempt to keep
up with current heterogeneous device landscapes, dis-
tributed applications, and multi-device users.

5.2 Candidates

First and foremost, the Java Cryptographic Exten-
sion (JCE) offers provider-based cryptographic ser-
vices since its introduction with Java 1.1. The exten-
sion enables the use of separate providers for different
tasks and has been successfully used for hardware se-
curity modules and a variety of software providers.
However, when it comes to remote cryptographic
providers, JCE falls short in terms of API features.

The World Wide Web Consortium (W3C) set out
to unify cryptography for browsers by proposing their
Web Cryptography API (Sleevi and Watson, 2014),
an attempt to provide better access to cryptography
to web applications. The API is designed to use
the cryptographic features of the underlying operat-
ing system. All in all, W3C’s Web Cryptography
API is without doubt a promising concept but quickly
reaches it limits when used in current device and ap-
plication landscapes.

The Cryptographic Service Interoperability Layer
(CrySIL) concept (Reimair et al., 2016) has been cre-
ated to satisfy current requirements. It offers trans-
parent use of cryptographic service providers by hid-
ing the interoperability layer behind common cryp-
tographic APIs like JCE, PKCS#11, or Microsoft’s
CNG. The concept can offer local providers and off-
device cloud key services as well. The framework
even handles basic authentication tasks out of the box.
All in all, as CrySIL can provide local software cryp-
tography providers, hardware backed providers, as
well as remote providers without a change in inter-
face, CrySIL is, as of today, the most promising ap-
proach to tackle current challenges.

6 CONCLUSIONS

New technologies in computing are without doubt en-
ablers on new applications and use cases. However,
applied cryptography as of today cannot always keep
up with the fast-paced evolution of device environ-
ments and applications.

Cryptographic Service Providers in Current Device Landscapes: An Inconvenient Truth

373



In this work, we reduce cryptographic service
providers to three different types namely software,
hardware, and remote providers. Our case study
showed that current applications cannot assume to use
one specific provider even on the same device class.
Furthermore, we found that the characteristics of an
application can change considerable by changing the
provider type. Not knowing which provider is going
to be used can therefore compromise security of an
application. And finally, our security analysis showed
that no single provider can excel in every use case.

Based on these findings we create a list of features
that we believe would answer the challenges given:

• an application has to use the cryptographic service
provider which is most suitable for a task at hand,

• modern multi-device users need to access their
cryptographic keys wherever and whenever in
need,

• the user deserves to decide which cryptographic
service provider she wants to use, and

• it is crucial for applied cryptography to be easy to
use for users and developers.

These features are not yet available in applied cryp-
tography and we believe that providing these features
will get personal data security up to speed again.

REFERENCES

Backes, M., Bugiel, S., Derr, E., Gerling, S., and Hammer,
C. (2016). R-droid: Leveraging android app analysis
with static slice optimization. In Proceedings of the
11th ACM on Asia Conference on Computer and Com-
munications Security, ASIA CCS ’16, pages 129–140,
New York, NY, USA. ACM.

Baumgärtner, L., Graubner, P., Schmidt, N., and Freisleben,
B. (2015). Andro lyze: A distributed framework for
efficient android app analysis. In 2015 IEEE Interna-
tional Conference on Mobile Services, pages 73–80.

Chang, V., Kuo, Y.-H., and Ramachandran, M. (2016).
Cloud computing adoption framework: A security
framework for business clouds. Future Generation
Computer Systems, 57:24 – 41.

Chang, V. and Ramachandran, M. (2016). Towards achiev-
ing data security with the cloud computing adoption
framework. IEEE Transactions on Services Comput-
ing, 9(1):138–151.

Egele, M., Brumley, D., Fratantonio, Y., and Kruegel, C.
(2013). An empirical study of cryptographic misuse in
android applications. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer &#38; Communi-
cations Security, CCS ’13, pages 73–84, New York,
NY, USA. ACM.

Fernandes, D. A. B., Soares, L. F. B., Gomes, J. V., Freire,
M. M., and Inácio, P. R. M. (2014). Security issues in

cloud environments: a survey. International Journal
of Information Security, 13(2):113–170.

Gutmann, P. and Grigg, I. (2005). Security usability. IEEE
Security & Privacy, 3:56–58.

Halpin, H. (2014a). The W3C Web Cryptography API:
Design and Issues. In Proceedings of the 5th Inter-
national Workshop on Web APIs and RESTful design
(WS-REST), Seoul, Korea.

Halpin, H. (2014b). The W3C Web Cryptography API: Mo-
tivation and Overview. In Proceedings of the Compan-
ion Publication of the 23rd International Conference
on World Wide Web Companion, WWW Companion
’14, pages 959–964. W3C.

Kimak, S., Ellman, J., and Laing, C. (2012). An inves-
tigation into possible attacks on HTML5 indexedDB
and their prevention. In The 13th Annual PostGradu-
ate Symposium on The Convergence of Telecommuni-
cations, Networking and Broadcasting (PGNet 2012),
Liverpool, UK. Liverpool John Moores University.

Kimak, S., Ellman, J., and Laing, C. (2014). Some Potential
Issues with the Security of HTML5 IndexedDB. IET
Conference Proceedings, pages 2.2.2–2.2.2(1).

Lazar, D., Chen, H., Wang, X., and Zeldovich, N. (2014).
Why does cryptographic software fail?: A case study
and open problems. In Proceedings of 5th Asia-
Pacific Workshop on Systems, APSys ’14, pages 7:1–
7:7, New York, NY, USA. ACM.

Mohamed, I. and Patel, D. (2015). Android vs ios secu-
rity: A comparative study. In 2015 12th International
Conference on Information Technology - New Gener-
ations, pages 725–730.

National Institute of Standards and Technology (2001).
FIPS140-2: Security Requirements for Cryptographic
Modules.

Reimair, F. (2011). Trusted virtual security module.
Reimair, F. (2014). Cloud-based signature solutions: A sur-

vey. Technical report, Secure Information Technology
Center - Austria.

Reimair, F., Teufl, P., and Zefferer, T. (2016). CrySIL:
Bringing Crypto to the Modern User. In Web Informa-
tion Systems and Technologies, volume 246 of Lecture
Notes in Business Information Processing. Springer.

Reiter, A. and Zefferer, T. (2015). Power: A cloud-based
mobile augmentation approach for web- and cross-
platform applications. In Cloud Networking.

Ren, K., Wang, C., and Wang, Q. (2012). Security chal-
lenges for the public cloud. IEEE Internet Computing,
16(1):69–73.

Santos, N., Raj, H., Saroiu, S., and Wolman, A. (2014).
Using arm trustzone to build a trusted language run-
time for mobile applications. In Proceedings of the
19th International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, pages 67–80, New York, NY, USA. ACM.

Sleevi, R. and Watson, M. (2014). W3C Candidate Recom-
mendation: Web Cryptography API.

Varadharajan, V. and Tupakula, U. (2014). Security as a ser-
vice model for cloud environment. IEEE Transactions
on Network and Service Management, 11(1):60–75.

SECRYPT 2017 - 14th International Conference on Security and Cryptography

374


