Chanel, G., Ansari-Asl, K., and Pun, T. (2007). Valence-
arousal evaluation using physiological signals in an
emotion recall paradigm. In 2007 IEEE International
Conference on Systems, Man and Cybernetics, pages
2662–2667. IEEE.
Colibazzi, T., Posner, J., Wang, Z., Gorman, D., Gerber,
A., Yu, S., Zhu, H., Kangarlu, A., Duan, Y., Rus-
sell, J. A., et al. (2010). Neural systems subserving
valence and arousal during the experience of induced
emotions. Emotion, 10(3):377.
Corporation, I. (2012). Manual de usuario de IBM SPSS
Modeler 15. page 280.
Crowley, K., Sliney, A., Pitt, I., and Murphy, D. (2010).
Evaluating a brain-computer interface to categorise
human emotional response. In 2010 10th IEEE In-
ternational Conference on Advanced Learning Tech-
nologies, pages 276–278. Ieee.
Das, R., Chatterjee, D., Das, D., Sinharay, A., and Sinha,
A. (2014). Cognitive load measurement-a methodol-
ogy to compare low cost commercial eeg devices. In
Advances in Computing, Communications and Infor-
matics (ICACCI, 2014 International Conference on,
pages 1188–1194. IEEE.
Ekman, P., Friesen, W. V., O’Sullivan, M., Chan, A.,
Diacoyanni-Tarlatzis, I., Heider, K., Krause, R.,
LeCompte, W. A., Pitcairn, T., Ricci-Bitti, P. E., et al.
(1987). Universals and cultural differences in the
judgments of facial expressions of emotion. Journal
of personality and social psychology, 53(4):712.
Hamann, S. (2012). Mapping discrete and dimensional
emotions onto the brain: controversies and consensus.
Trends in cognitive sciences, 16(9):458–466.
Hosseini, S. A. and Naghibi-Sistani, M. B. (2011). Emo-
tion recognition method using entropy analysis of eeg
signals. International Journal of Image, Graphics and
Signal Processing, 3(5):30.
Levenson, R. W. (2011). Basic emotion questions. Emotion
Review, 3(4):379–386.
Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E.,
and Barrett, L. F. (2012). The brain basis of emotion: a
meta-analytic review. Behavioral and Brain Sciences,
35(03):121–143.
Liu, N.-H., Chiang, C.-Y., and Chu, H.-C. (2013). Recog-
nizing the degree of human attention using eeg signals
from mobile sensors. Sensors, 13(8):10273–10286.
Liu, Y., Sourina, O., and Nguyen, M. K. (2011). Real-
time eeg-based emotion recognition and its applica-
tions. In Transactions on computational science XII,
pages 256–277. Springer.
Maki, Y., Sano, G., Kobashi, Y., Nakamura, T., Kanoh,
M., and Yamada, K. (2012). Estimating subjective
assessments using a simple biosignal sensor. In Soft-
ware Engineering, Artificial Intelligence, Networking
and Parallel & Distributed Computing (SNPD), 2012
13th ACIS International Conference on, pages 325–
330. IEEE.
Molt
´
o, J., Monta
˜
n
´
es, S., Gil, R. P., Segarra, P., Verchili,
M. C. P., Ir
´
un, M. P. T., Ram
´
ırez, I., Hern
´
andez, M.,
S
´
anchez, M., Fern
´
andez, M., et al. (1999). Un m
´
etodo
para el estudio experimental de las emociones: el in-
ternational affective picture system (iaps). adaptaci
´
on
espa
˜
nola. Revista de psicolog
´
ıa general y aplicada:
Revista de la Federaci
´
on Espa
˜
nola de Asociaciones
de Psicolog
´
ıa, 52(1):55–87.
Nielen, M., Heslenfeld, D., Heinen, K., Van Strien, J., Wit-
ter, M., Jonker, C., and Veltman, D. Distinct brain sys-
tems underlie the processing of valence and arousal of
affective pictures. Brain and Cognition, 71(3).
Russell, J. A. and Barrett, L. F. (1999). Core affect, pro-
totypical emotional episodes, and other things called
emotion: dissecting the elephant. Journal of person-
ality and social psychology, 76(5):805.
Schafer, R. (2011). What is a savitzky-golay filter? [lec-
ture notes]. Signal Processing Magazine, IEEE,
28(4):111–117.
Siamaknejad, H., Loo, C. K., and Liew, W. S. (2014).
Fractal dimension methods to determine optimum eeg
electrode placement for concentration estimation. In
Soft Computing and Intelligent Systems (SCIS), 2014
Joint 7th International Conference on and Advanced
Intelligent Systems (ISIS), 15th International Sympo-
sium on, pages 952–955.
Sourina, O. and Liu, Y. (2011). A fractal-based algorithm of
emotion recognition from eeg using arousal-valence
model. In BIOSIGNALS, pages 209–214.
Stone, J. V. (2004). Independent Component Analysis. A
tutorial introduction. MIT Press.
Szibbo, D., Luo, A., and Sullivan, T. J. (2012). Removal of
blink artifacts in single channel eeg. In 2012 Annual
International Conference of the IEEE Engineering in
Medicine and Biology Society, pages 3511–3514.
Valenza, G., Greco, A., Lanata, A., Gentili, C., Menicucci,
D., Sebastiani, L., Gemignani, A., and Scilingo, E. P.
(2015). Brain dynamics during emotion elicitation in
healthy subjects: An eeg study. In 2015 AEIT Interna-
tional Annual Conference (AEIT), pages 1–3. IEEE.
Van Hal, B., Rhodes, S., Dunne, B., and Bossemeyer, R.
(2014). Low-cost eeg-based sleep detection. In En-
gineering in Medicine and Biology Society (EMBC),
2014 36th Annual International Conference of the
IEEE, pages 4571–4574. IEEE.
Vytal, K. and Hamann, S. (2010). Neuroimaging support
for discrete neural correlates of basic emotions: a
voxel-based meta-analysis. Journal of Cognitive Neu-
roscience, 22(12):2864–2885.
Wang, Q. and Sourina, O. (2013). Real-time mental arith-
metic task recognition from eeg signals. Neural Sys-
tems and Rehabilitation Engineering, IEEE Transac-
tions on, 21(2):225–232.
Yoon, H., Park, S.-W., Lee, Y.-K., and Jang, J.-H. (2013).
Emotion recognition of serious game players using
a simple brain computer interface. In ICT Con-
vergence (ICTC), 2013 International Conference on,
pages 783–786. IEEE.
Emotions Detection based on a Single-electrode EEG Device
95