REFERENCES
Aggarwal, C. C. (2015). Outlier analysis. In Data Mining,
pages 237–263. Springer.
Aggarwal, C. C. and Yu, P. S. (2001). Outlier detection for
high dimensional data. pages 37–46.
Agrawal, R., Gehrke, J., Gunopulos, D., and Raghavan, P.
(1998). Automatic subspace clustering of high dimen-
sional data for data mining applications, volume 27.
ACM.
Agrawal, R., Srikant, R., et al. (1994). Fast algorithms for
mining association rules. 1215:487–499.
Bache, K. and Lichman, M. (2013). Uci machine learning
repository. http://archive.ics.uci.edu/ml.
Bajovic, D., Sinopoli, B., and Xavier, J. (2011). Sensor
selection for event detection in wireless sensor net-
works. IEEE Transactions on Signal Processing, 59.
Chandola, V., Banerjee, A., and Kumar, V. (2007).
Anomaly detection: A survey. Technical report, De-
partment of Computer Science and Engineering, Uni-
versity of Minnesota.
Cheng, C.-H., Fu, A. W., and Zhang, Y. (1999). Entropy-
based subspace clustering for mining numerical data.
In KDD, pages 84–93.
Cormen, T. H. (2009). Introduction to algorithms. MIT
press.
Cover, T. M. and Thomas, J. A. (2006). Elements of Infor-
mation Theory. John Wiley and Sons, Inc.
Dem
ˇ
sar, J. (2006). Statistical comparisons of classifiers
over multiple data sets. Journal of Machine Learning
Research, 7:1–30.
Deng, Z., Choi, K.-S., Jiang, Y., Wang, J., and Wang, S.
(2016). A survey on soft subspace clustering. Infor-
mation Sciences, 348:84–106.
Gan, G. and Ng, M. K.-P. (2015). Subspace clustering
with automatic feature grouping. Pattern Recognition,
48(11):3703–3713.
Gan, G., Wu, J., and Yang, Z. (2006). A fuzzy subspace
algorithm for clustering high dimensional data. pages
271–278.
Garc
´
ıa, S., Luengo, J., S
´
aez, J. A., L
´
opez, V., and Herrera,
F. (2014). A survey of discretization techniques: Tax-
onomy and empirical analysis in supervised learning.
IEEE Transactions on Knowledge and Data Engineer-
ing, 25(4):734–750.
Ge, Z. Q. and Song, Z. H. (2013). Multivariate Statistical
Process Control: Process Monitoring Methods and
Applications. Springer London Dordrecht Heidelberg
New York.
Goldstein, M. and Uchida, S. (2016). A comparative eval-
uation of unsupervised anomaly detection algorithms
for multivariate data. PloS one, 11(4):e0152173.
Jakulin, A. (2005). Machine learning based on attribute
interactions. Univerza v Ljubljani.
Jing, L., Ng, M. K., , and Huang, J. Z. (2007). An entropy
weighting k-means algorithm for subspace clustering
of high-dimensional sparse data. IEEE Transactios on
Knowledge and Data Engineering, 18(8):1026–1041.
Jyothsna, V., Prasad, V. V. R., and Prasad, K. M. (2011). A
review of anomaly based intrusion detection systems.
International Journal of Computer Applications.
Kagan, E. and Ben-Gal, I. (2013). Probabilistic Search for
Tracking Targets: Theory and Modern Applications.
John Wiley and Sons, Inc.
Kagan, E. and Ben-Gal, I. (2014). A group testing algorithm
with online informational learning. IIE Transactions,
46(2):164–184.
Keller, F., M
¨
uller, E., and B
¨
ohm, K. (2012). Hics: High
contrast subspaces for density-based outlier ranking.
In Proceedings of the 2012 IEEE 28th International
Conference on Data Engineering.
Kriegel, H.-P., Kr
¨
oger, P., and Zimek, A. (2009a). Clus-
tering high-dimensional data: A survey on subspace
clustering, pattern-based clustering, and correlation
clustering. ACM Transactions on Knowledge Discov-
ery from Data (TKDD), 3(1):1.
Kriegel, H.-P., Schubert, E., Zimek, A., and Kr
¨
oger, P.
(2009b). Outlier detection in axis-parallel subspaces
of high dimensional data. pages 831–838.
Kuratowski, C. (1961). Introduction to set theory and topol-
ogy.
Lazarevic, A. and Kumar, V. (2005). Feature bagging for
outlier detection. In ACM, editor, KDD’05.
Maimon, O. and Rockach, L. (2005). Data Mining and
Knowledge Discovery Handbook: A Complete Guide
for Practitioners and Researchers, chapter Outlier de-
tection. Kluwer Academic Publishers.
Markou, M. and Singh, S. (2003). Novelty detection: A
review?part1: Statistical approaches. Signal Process-
ing, 83:2481–2497.
McGill, W. J. (1954). Multivariate information transmis-
sion. Psychometrika, 19(2):97–116.
Menahem, E., Rokach, L., and Elovici, Y. (2013). Combin-
ing one-class classifiers via meta learning.
M
¨
uller, E., Schiffer, M., and Seidl, T. (2010). Adaptive out-
lierness for subspace outlier ranking. In CIKM, pages
1629–1632.
M
¨
uller, E., Schiffer, M., and Seidl, T. (2011). Statistical
selection of relevant subspace projections for outlier
ranking. In 2011 IEEE 27th International Conference
on Data Engineering.
Nguyen, H. V., M
¨
uller, E., and B
¨
ohm, K. (2013a). 4s: Scal-
able subspace search scheme overcoming traditional
apriori processing. IEEE International Conference on
Big Data, pages 359–367.
Nguyen, H. V., M
¨
uller, E., Vreeke, J. ans Keller, F., and
B
¨
ohm, K. (2013b). Cmi: An information-theoretic
contrast measure for enhancing subspace cluster and
outlier detection. SIAM.
Park, C., Huang, J. Z., and Ding, Y. (2010). A computable
plug-in estimator of minimum volume sets for novelty
detection. Operation Research, Informs.
Parsons, L., Haque, E., and Liu, H. (2004). Subspace
clustering for high dimensional data: a review. Acm
Sigkdd Explorations Newsletter, 6(1):90–105.
Pimentel, M. A. F., Clifton, D. A., Clifton, L., and
Tarassenko, L. (2014). A review of novelty detection.
Signal Processing, 99:215–249.