form the simulation by treating the aortic wall as an
elastic body.
ACKNOWLEDGEMENTS
We greatly appreciate Dr. Shuichiro Takanashi, who
is a chief director of Sakakibara Heart Institute, for
providing us the CT data and some useful advices.
This work has also been supported by JSPS KAK-
ENHI Grant Number 15K00176.
REFERENCES
Carmody, C. J., Burriesci, G., Howard, I. C., and Patterson,
E. A. (2006). An approach to the simulation of fluid-
structure interaction in the aortic valve. Journal of
Biomechanics, 39:158–169.
Cheng, R., Lai, Y. G., and Chandran, K. B. (2004). Three-
dimensional fluid-structure interaction simulation of
bileaflet mechanical heart valve flow dynamics. An-
nals of Biomedical Engineering, 32(11):1471–1483.
Hart, J. D., Peters, G. W. M., Schreurs, P. J. G., and Baai-
jens, F.P. T. (2000). A two-dimensional fluid-structure
interaction model of the aortic value. Journal of
Biomechanics, 33:1079–1088.
Hart, J. D., Peters, G. W. M., Schreurs, P. J. G., and Baai-
jens, F. P. T. (2003). A three-dimensional computa-
tional analysis of fluid-structure interaction in the aor-
tic valve. Journal of Biomechanics, 36:103–112.
Hsu, M.-C., Kamensky, D., Bazilevs, Y., Sackes, M. S., and
Hughes, T. J. R. (2014). Fluid-structure interaction
analysis of bioprosthetic heart valves: significance of
arterial wall deformation. Comput Mech, 54:1055–
1071.
Hsu, M.-C., Kamensky, D., Xu, F., Kiendl, J., Wang, C.,
Wu, M. C., Mineroff, J., Reali, A., Bazilevs, Y., and
Sackes, M. S. (2015). Dynamic and fluid-structure
interaction simulations of bioprosthetic heart valves
using parametric design with t-splines and fung-type
material models. Comput Mech, 55:1211–1225.
Izawa, Y. (2009). Medical Note: Cardiovascular Disease.
Nishimura, Tokyo.
Klabunde, R. E. (2012). Color Atlas of Physiology. Lippin-
cott Williams & Wilkins, Baltimore, 2nd edition.
Koshizuka, S. (2005). Particle Method. Maruzen, Tokyo.
Le, T. B. and Sotiropoulos, F. (2013). Fluid-structure inter-
action of an aortic heart valve prosthesis driven by an
animated anatomic left ventricle. Journal of Compu-
tational Physics, 244:41–62.
Levick, J. R. (2011). An Introduction to Cardiovascular
Physiology. Medical Science International, Tokyo.
Loon, R. V., Anderson, P. D., Baaijens, F. P. T., and
van de Vosse, F. N. (2005). A three-dimensional
fluid-structure interaction method for heart valve mod-
elling. C.R.Mecanique, 333:856–866.
Mukai, N., Abe, Y., Chang, Y., Niki, K., and Takanashi, S.
(2014). Particle based simulation of the aortic valve
by considering heart’s pulsation. In Medicine Meets
Virtual Reality, pages 285–289. IOS Press.
Mukai, N., Takahashi, T., and Chang, Y. (2016). Particle-
based simulation on aortic valve behavior with CG
model generated from CT. In VISIGRAPP 2016,
pages 248–253.
Seo, T., Jeong, S. H., Kim, D. H., and Seo, D. (2011).
The blood flow simulation of human aortic arch model
with major branches. In International Conference on
Biomedical Engineering and Informatics, pages 923–
926.
Silbernagl, S. and Despopoulos, A. (2009). Color Atlas of
Physiology. Georg Thieme Verlag, Stuttgart, 6th edi-
tion.
Wendell, D. C., Samyn, M. M., Cava, J. R., Ellwein, L. M.,
Krolikowski, M. M., Gandy, K. L., Pelech, A. M.,
Shadden, S. C., and LaDisaJr., J. F. (2013). Includ-
ing aortic valve morphology in computational fluid
dynamics simulations: Initial findings and application
to aortic coarctation. Medical Engineering & Physics,
35:723–735.