Clarke, F. (1990). Optimization and Nonsmooth Analysis.
Classics in Applied Mathematics. SIAM.
Giesl, P. and Hafstein, S. (2014a). Computation of Lya-
punov functions for nonlinear discrete systems by lin-
ear programming. J. Difference Equ. Appl., 20:610–
640.
Giesl, P. and Hafstein, S. (2014b). Implementation of a fan-
like triangulation for the CPA method to compute Lya-
punov functions. In Proceedings of the 2014 Ameri-
can Control Conference, pages 2989–2994 (no. 0202),
Portland (OR), USA.
Giesl, P. and Hafstein, S. (2014c). Revised CPA method to
compute Lyapunov functions for nonlinear systems. J.
Math. Anal. Appl., 410:292–306.
Hafstein, S. (2007). An algorithm for constructing Lya-
punov functions, volume 8 of Monograph. Electron.
J. Diff. Eqns.
Hafstein, S. (2013). Implementation of simplicial com-
plexes for CPA functions in C++11 using the ar-
madillo linear algebra library. In Proceedings of SI-
MULTECH, pages 49–57, Reykjavik, Iceland.
Hafstein, S., Kellett, C., and Li, H. (2014). Computation
of Lyapunov functions for discrete-time systems using
the Yoshizawa construction. In Proceedings of CDC.
Hafstein, S., Kellett, C., and Li, H. (2015). Computing con-
tinuous and piecewise affine lyapunov functions for
nonlinear systems . Journal of Computational Dynam-
ics, 2(2):227 – 246.
Johansson, M. (1999). Piecewise Linear Control Systems.
PhD thesis: Lund University, Sweden.
Johansson, M. and Rantzer, A. (1998). Computation of
piecewise quadratic Lyapunov functions for hybrid
systems. IEEE Trans. Automat. Control, 43(4):555–
559.
Julian, P. (1999). A High Level Canonical Piecewise Lin-
ear Representation: Theory and Applications. PhD
thesis: Universidad Nacional del Sur, Bahia Blanca,
Argentina.
Julian, P., Guivant, J., and Desages, A. (1999). A
parametrization of piecewise linear Lyapunov func-
tions via linear programming. Int. J. Control, 72(7-
8):702–715.
Lazar, M. (2010). On infinity norms as Lyapunov func-
tions: Alternative necessary and sufficient conditions.
In Proceedings of the 49th IEEE Conference on Deci-
sion and Control, pages 5936–5942, Atlanta, USA.
Lazar, M. and Doban, A. (2011). On infinity norms as Lya-
punov functions for continuous-time dynamical sys-
tems. In Proceedings of the 50th IEEE Conference
on Decision and Control, pages 7567–7572, Orlando
(Florida), USA.
Lazar, M., Doban, A., and Athanasopoulos, N. (2013). On
stability analysis of discrete-time homogeneous dy-
namics. In Proceedings of the 17th International
Conference on systems theory, control and computing,
pages 297–305, Sinaia, Romania.
Lazar, M. and Joki
´
c, A. (2010). On infinity norms as Lya-
punov functions for piecewise affine systems. In Pro-
ceedings of the Hybrid Systems: Computation and
Control conference, pages 131–141, Stockholm, Swe-
den.
Li, H., Hafstein, S., and Kellett, C. (2015). Computation of
continuous and piecewise affine Lyapunov functions
for discrete-time systems. J. Difference Equ. Appl.,
21(6):486–511.
Marin
´
osson, S. (2002a). Lyapunov function construction
for ordinary differential equations with linear pro-
gramming. Dynamical Systems: An International
Journal, 17:137–150.
Marin
´
osson, S. (2002b). Stability Analysis of Nonlin-
ear Systems with Linear Programming: A Lyapunov
Functions Based Approach. PhD thesis: Gerhard-
Mercator-University Duisburg, Duisburg, Germany.
Ohta, Y. (2001). On the construction of piecewise lin-
ear Lyapunov functions. In Proceedings of the 40th
IEEE Conference on Decision and Control., volume 3,
pages 2173–2178.
Ohta, Y. and Tsuji, M. (2003). A generalization of piece-
wise linear Lyapunov functions. In Proceedings of the
42nd IEEE Conference on Decision and Control., vol-
ume 5, pages 5091–5096.
Papachristodoulou, A., Anderson, J., Valmorbida, G.,
Pranja, S., Seiler, P., and Parrilo, P. (2013). SOS-
TOOLS: Sum of Squares Optimization Toolbox for
MATLAB. User’s guide. Version 3.00 edition.
Parrilo, P. (2000). Structured Semidefinite Programs and
Semialgebraic Geometry Methods in Robustness and
Optimiza. PhD thesis: California Institute of Technol-
ogy Pasadena, California.
Peet, M. (2009). Exponentially stable nonlinear systems
have polynomial Lyapunov functions on bounded re-
gions. IEEE Trans. Automat. Control, 54(5):979 –
987.
Peet, M. and Papachristodoulou, A. (2012). A con-
verse sum of squares Lyapunov result with a degree
bound. IEEE Transactions on Automatic Control,
57(9):2281–2293.
Polanski, A. (1997). Lyapunov functions construction by
linear programming. IEEE Trans. Automat. Control,
42:1113–1116.
Polanski, A. (2000). On absolute stability analysis by poly-
hedral Lyapunov functions. Automatica, 36:573–578.
Sanderson, C. (2010.). Armadillo: An open source C++
linear algebra library for fast prototyping and com-
putationally intensive experiments. Technical report,
NICTA.
Yfoulis, C. and Shorten, R. (2004). A numerical technique
for the stability analysis of linear switched systems.
Int. J. Control, 77(11):1019–1039.
Efficient Algorithms for Simplicial Complexes Used in the Computation of Lyapunov Functions for Nonlinear Systems
409