REFERENCES
Brian, L., Joshua, G., Mitch, R., and Kurt C., W.
(2014). Generating test data for insider threat detec-
tors. JoWUA, 5(2):80–94.
Claycomb, W. R. and Nicoll, A. (2012). Insider threats to
cloud computing: Directions for new research chal-
lenges. In 2012 IEEE 36th Annual Computer Software
and Applications Conference, pages 387–394.
Cloud Security Alliance CSA (2016). The Treacherous 12
- Cloud Computing Top Threats in 2016.
Collins, M., Theis, M., Trzeciak, R., Strozer, J., Clark, J.,
Costa, D., Cassidy, T., Albrethsen, M., and Moore,
A. (2016). Common sense guide to mitigating in-
sider threats. Technical Report CMU/SEI-2016-TR-
015, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA.
Costa, D., Collins, M., Perl, S. J., Albrethsen, M., Silowash,
G., and Spooner, D. (2014). An ontology for in-
sider threat indicators: Development and application.
In Proceedings of the Ninth Conference on Seman-
tic Technology for Intelligence, Defense, and Security,
Fairfax VA, USA, November 18-21, 2014., pages 48–
53.
Creech, G. and Hu, J. (2013). Generation of a new ids test
dataset: Time to retire the kdd collection. In 2013
IEEE Wireless Communications and Networking Con-
ference (WCNC), pages 4487–4492.
Duncan, A., Creese, S., and Goldsmith, M. (2015). An
overview of insider attacks in cloud computing. Con-
currency and Computation: Practice and Experience,
27(12):2964–2981.
Emmott, A. F., Das, S., Dietterich, T., Fern, A., and Wong,
W.-K. (2013). Systematic construction of anomaly de-
tection benchmarks from real data. In Proceedings
of the ACM SIGKDD Workshop on Outlier Detection
and Description, ODD ’13, pages 16–21, New York,
NY, USA. ACM.
Greitzer, F. L., Imran, M., Purl, J., Axelrad, E. T., Leong,
Y. M., Becker, D. E., Laskey, K. B., and Sticha, P. J.
(2016). Developing an ontology for individual and or-
ganizational sociotechnical indicators of insider threat
risk. In STIDS.
Kandias, M., Mylonas, A., Virvilis, N., Theoharidou, M.,
and Gritzalis, D. (2010). An Insider Threat Predic-
tion Model, pages 26–37. Springer Berlin Heidelberg,
Berlin, Heidelberg.
Kandias, M., Virvilis, N., and Gritzalis, D. (2013). The
Insider Threat in Cloud Computing, pages 93–103.
Springer Berlin Heidelberg, Berlin, Heidelberg.
Kholidy, H. A. and Baiardi, F. (2012). CIDD: A Cloud In-
trusion Detection Dataset for Cloud Computing and
Masquerade Attacks. In 2012 Ninth International
Conference on Information Technology: New Gener-
ations (ITNG), pages 397–402. IEEE.
Lincon Laboratory MIT (2017). Darpa intrusion detec-
tion evaluation. https://www.ll.mit.edu/ideval/data/
index.html.
MUSA (2017). MUSA H2020 project. http://www.musa-
project.eu/. (Retrieved May 2017).
Nkosi, L., Tarwireyi, P., and Adigun, M. O. (2013). Insider
threat detection model for the cloud. In 2013 Informa-
tion Security for South Africa, pages 1–8.
Ringberg, H., Roughan, M., and Rexford, J. (2008). The
need for simulation in evaluating anomaly detectors.
SIGCOMM Comput. Commun. Rev., 38(1):55–59.
Salem, M. B. and Stolfo, S. J. (2011). Modeling user search
behavior for masquerade detection. In Proceedings
of the 14th International Conference on Recent Ad-
vances in Intrusion Detection, RAID’11, pages 181–
200, Berlin, Heidelberg. Springer-Verlag.
Shaw, E. D. (2006). The role of behavioral research and pro-
filing in malicious cyber insider investigations. Digit.
Investig., 3(1):20–31.
Shiravi, A., Shiravi, H., Tavallaee, M., and Ghorbani, A. A.
(2012). Toward developing a systematic approach to
generate benchmark datasets for intrusion detection.
Computers & Security.
UNSW, Australian Defense Force Academy (2017).
Adfa ids datasets. https://www.unsw.adfa.
edu.au/australian-centre-for-cyber-
security/cybersecurity/ADFA-IDS-Datasets/.
Wright, C. V., Connelly, C., Braje, T., Rabek, J. C., Rossey,
L. M., and Cunningham, R. K. (2010). Generat-
ing Client Workloads and High-Fidelity Network Traf-
fic for Controllable, Repeatable Experiments in Com-
puter Security, pages 218–237. Springer Berlin Hei-
delberg, Berlin, Heidelberg.
Automatic Derivation and Validation of a Cloud Dataset for Insider Threat Detection
487