Janik, M. and Kochut, K. J. (2008). Wikipedia in action:
Ontological knowledge in text categorization. In Se-
mantic Computing, 2008 IEEE International Confer-
ence on, pages 268–275. IEEE.
Jastrzebski, S., Le
´
sniak, D., and Czarnecki, W. M. (2017).
How to evaluate word embeddings? on importance
of data efficiency and simple supervised tasks. arXiv
preprint arXiv:1702.02170.
Kim, H.-J. and Hong, K.-J. (2015). Building semantic
concept networks by wikipedia-based formal concept
analysis. Advanced Science Letters, 21(3):435–438.
Kim, Y. (2014). Convolutional neural networks for sentence
classification. arXiv preprint arXiv:1408.5882.
Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kon-
tokostas, D., Mendes, P. N., Hellmann, S., Morsey,
M., Van Kleef, P., Auer, S., et al. (2015). Dbpedia–
a large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web, 6(2):167–195.
Liu, C., Sun, W., Chao, W., and Che, W. (2013). Convo-
lution neural network for relation extraction. In Inter-
national Conference on Advanced Data Mining and
Applications, pages 231–242. Springer.
Liu, H. and Singh, P. (2004). Conceptneta practical com-
monsense reasoning tool-kit. BT technology journal,
22(4):211–226.
Maaten, L. v. d. and Hinton, G. (2008). Visualizing data
using t-sne. Journal of Machine Learning Research,
9(Nov):2579–2605.
Maedche, A. and Staab, S. (2000). The text-to-onto ontol-
ogy learning environment. In Software Demonstra-
tion at ICCS-2000-Eight International Conference on
Conceptual Structures, volume 38. sn.
Maitra, P. and Das, D. (2016). Junlp at semeval-2016 task
13: A language independent approach for hypernym
identification. Proceedings of SemEval, pages 1310–
1314.
Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R.,
Bethard, S., and McClosky, D. (2014). The stanford
corenlp natural language processing toolkit. In ACL
(System Demonstrations), pages 55–60.
McClosky, D., Charniak, E., and Johnson, M. (2010). Auto-
matic domain adaptation for parsing. In Human Lan-
guage Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for
Computational Linguistics, pages 28–36. Association
for Computational Linguistics.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013b). Distributed representations of words
and phrases and their compositionality. In Advances in
neural information processing systems, pages 3111–
3119.
Miller, G. A. (1995). Wordnet: a lexical database for en-
glish. Communications of the ACM, 38(11):39–41.
Nesterov, Y. (1983). A method for unconstrained convex
minimization problem with the rate of convergence o
(1/k2). In Doklady an SSSR, volume 269, pages 543–
547.
Nguyen, T. H. and Grishman, R. (2015). Relation extrac-
tion: Perspective from convolutional neural networks.
In Proceedings of NAACL-HLT, pages 39–48.
Panchenko, A., Faralli, S., Ruppert, E., Remus, S., Naets,
H., Fairon, C., Ponzetto, S. P., and Biemann, C.
(2016). Taxi at semeval-2016 task 13: a taxonomy
induction method based on lexico-syntactic patterns,
substrings and focused crawling. Proceedings of Se-
mEval, pages 1320–1327.
Pembeci,
˙
I. (2016). Using word embeddings for ontology
enrichment. International Journal of Intelligent Sys-
tems and Applications in Engineering, 4(3):49–56.
Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In
EMNLP, volume 14, pages 1532–1543.
Pocostales, J. (2016). Nuig-unlp at semeval-2016 task 13:
A simple word embedding-based approach for taxon-
omy extraction. Proceedings of SemEval, pages 1298–
1302.
Shen, Y., He, X., Gao, J., Deng, L., and Mesnil, G.
(2014). Learning semantic representations using con-
volutional neural networks for web search. In Pro-
ceedings of the 23rd International Conference on
World Wide Web, pages 373–374. ACM.
Sun, A., Grishman, R., and Sekine, S. (2011). Semi-
supervised relation extraction with large-scale word
clustering. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies-Volume 1, pages 521–
529. Association for Computational Linguistics.
Tan, L., Bond, F., and van Genabith, J. (2016). Usaar at
semeval-2016 task 13: Hyponym endocentricity. Pro-
ceedings of SemEval, pages 1303–1309.
Velardi, P., Faralli, S., and Navigli, R. (2013). Ontolearn
reloaded: A graph-based algorithm for taxonomy in-
duction. Computational Linguistics, 39(3):665–707.
Yih, W.-t., He, X., and Meek, C. (2014). Semantic parsing
for single-relation question answering. In ACL (2),
pages 643–648. Citeseer.
Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J., et al. (2014).
Relation classification via convolutional deep neural
network. In COLING, pages 2335–2344.