opinion of experts on violence should be considered
in order to determine the initial classification of the
images to be used, it should also be taken into account
that gender is not the only thing that can be inferred
in the reaction of the human brain before the
visualization of violent images or not.
Also, the creation of a more extensive database
with a greater number of participants, in order to be
able to contemplate cases that reacted abnormally to
the presence of violence could help in the training
stage for several algorithms such as SVM or
Adaboost. It could also be an option, to use videos
with violent or non-violent content instead of images
for future works.
REFERENCES
Hassner, T., Itcher, Y., Kliper-Gross, O., 2012, "Violent
flows: Real-time detection of violent crowd
behavior," Computer Vision and Pattern Recognition
Workshops (CVPRW), 2012 IEEE Computer Society
Conference on, Providence, RI, pp. 1-6.
Wang, D., Zhang, Z., Wang, W., Wang, L., Tan, T., 2012,
"Baseline Results for Violence Detection in Still
Images," Advanced Video and Signal-Based
Surveillance (AVSS), 2012 IEEE Ninth International
Conference on, Beijing, pp. 54-57.
Tisserom, S., 2006, "Los 11-13 años frente al estrés de las
imágenes violentas", Subjetividad y procesos
cognitivos, vol. 9, no. 1, pp. 177-197.
Wiswede, D., Taubner, S., Münte, T., Roth, G., Strüber, D.,
Wahl, K., Krämer, U., 2011, “Neurophysiological
correlates of laboratory-induced aggression in young
men with and without a history of violence”, PLoS
ONE.
Manrique, C. J., 2014, “Detección acústica de disparos de
armas de fuego usando técnicas de minería de datos”
proyecto terminal, División de Ciencias Básicas e
Ingeniería, Universidad Autónoma Metropolitana,
México.
R Core Team, 2017. R: A language and environment for
statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. URL https://www.R-
project.org/.
Meyer, D., Dimitriadou, E., Hornik, K, Weingessel, A.,
Leisch, A., 2015. e1071: Misc Functions of the
Department of Statistics, Probability Theory Group
(Formerly: E1071), TU Wien. R package version 1.6-7.
https://CRAN.R-project.org/package=e1071
Chatterjee, S., 2016. fastAdaboost: a Fast Implementation
of Adaboost. R package version 1.0.0. https://CRAN.R-
project.org/package=fastAdaboost
Hothorn, T., Hornik, K., Zeileis, A., 2006. Unbiased
Recursive Partitioning: A Conditional Inference
Framework. Journal of Computational and Graphical
Statistics, 15(3), 651--674.
Hennig, C., 2015. fpc: Flexible Procedures for Clustering.
R package version 2.1-10. https://CRAN.R-
project.org/package=fpc
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M.,
Hornik, K., 2016. cluster: Cluster Analysis Basics and
Extensions. R package version 2.0.5.
Lotte F, Congedo M, Lécuyer A, Lamarche F, Arnaldi B.,
2007, “A review of classification algorithms for EEG-
based brain-computer interfaces”. Journal of Neural
Engineering, IOP Publishing, 4, pp. 24
Karatzoglou, A., Meyer, D., & Hornik, K., 2006. Support
Vector Machines in R. Journal of Statistical Software,
15(9), 1 - 28.
Platt JC., 1998. “Fast Training of Support Vector Machines
Using Sequential Minimal Optimization.” In B
Schölkopf, CJC Burges, AJ Smola (eds.), “Advances in
Kernel Methods – Support Vector Learning,” pp. 185–
208. MIT Press, Cambridge, MA.
Osuna, E., Freund, R., Girosi, F. 1997. "An improved
training algorithm for support vector machines," Neural
Networks for Signal Processing VII. Proceedings of the
1997 IEEE Signal Processing Society Workshop,
Amelia Island, FL, pp. 276-285.
Vishwanathan SVN, Smola A, Murty N., 2003.
“SimpleSVM.” In “Proceedings of the Twentieth
International Conference on Machine Learning (ICML-
2003), Washington DC” AAAI Press.