Occidentale.
Chen, C.L., Nutter, R.S., 1991. Improving the training
speed of three-layer feedforward neural nets by
optimal estimation of the initial weights, Proc. of the
IJCNN International Joint Conference on Neural
Networks, Seattle, USA, july 8-12, 2063-2068.
Cui, C., Wang, D., 2016. High dimensional data
regression using lasso model and neural networks with
random weights. Information Sciences, 372, 505-517.
Deng, W., Zheng, Q., Chen, L., 2009. Regularized
extreme learning machine, Proc. of IEEE Symp. on
Computational Intelligence and Data Mining
CIDM’09, 389-395
Demuth, H, Beale, P., 1994. Neural networks toolbox
user's guide. V2.0, The MathWorks, Inc
Drago, G.P., Ridella, S., 1992. Statistically controlled
activation weight initialization, IEEE Transactions on
Neural Networks, 3, 4, 627-631.
Feng, G., Huang, G.B., Lin, Q., 2009. Error minimized
extreme learning machine with growth of hidden
nodes and incremental learning, IEEE Trans. on
Neural Networks, 20, 8, 1352-1357.
Huang, G.B., Zhu, Q.Y., Siew, C.K., 2004. Extreme
learning machine: a new learning scheme of
feedforward neural networks, Proc. of the IEEE
International Joint Conference on Neural Networks, 2,
985-990.
Huang, G.B., Chen, L., Siew, C.K., 2006. Universal
approximation using incremental constructive
feedforward networks with random hidden nodes,
IEEE trans. on Neural Networks, 17, 4, 879-892.
Huang, Y.W., Lai, D.H., 2012. Hidden node optimization
for extreme learning machine, AASRI Procedia, 3,
375-380.
Javed, K., Gouriveau, R., Zerhouni, N., 2014. SW-ELM:
A summation wavelet extreme learning machine
algorithm with a priori parameter initialization,
Neurocomputing, 123, 299-307.
Kibler, D., Aha, D.W., 1988. Instance-Based Prediction of
Real-Valued Attributes, Proc. of the CSCSI (Canadian
AI) Conference
Kibler, D., Aha, D.W., Albert, M., 1989. Instance-based
prediction of real-valued attributes, Computational
Intelligence, 5, 5157
Kuncheva, L.I., Whitaker, C.J., 2003. Measures of
diversity in classifier ensembles and their relationship
with the ensemble accuracy, Machine Learning, 51,
181–207
Lendasse, A., Man, V.C., Miche, Y., Huang, G.B., 2016.
Editorial: Advances in extreme learning machines
(ELM2014), Neurocomputing, 174, 1-3.
Li, M., Wang, D., 2017. Insights into randomized
algorithms for neural networks: practical issues and
common pitfalls. Information Sciences, 382, 170-178.
Matias, T., Souza, F., Araujo, R., Antunes, C.H., 2014.
Learning of a single-hidden layer feedforward neural
network using an optimized extreme learning machine,
Neurocomputing
, 129, 428-436.
Miche, Y., Sorjamaa, A., Bas, P., 2010. OP-ELM:
Optimally pruned extreme learning machine, IEEE
Trans. On Neural Networks, 21, 1, 158-162.
Nguyen, D., Widrow, B., 1990. Improving the learning
speed of 2-layer neural networks by choosing initial
values of the adaptive weights, proc. of the IJCNN Int.
Joint Conf. on Neural Networks, 3, 21-26
Norgaard, M., 1995. Neural network based system
identification toolbox, TC. 95-E-773, Institute of
Automation, Technical University of Denmark,
http://www.iau.dtu.dk/research/control/nnsysid.html
Qu, B.Y., Lang, B.F., Liang, J.J., Quin, A.K., Crisalle,
O.D., 2016. Two hidden-layer extreme learning
machine for regression and classification,
Neurocomputing, 175, 826-834.
Rajesh, R., Parkash, J.S., 2011. Extreme learning machine
– A review and state-of-art, International Journal of
Wisdom Based Computing, 1, &, 35-49;
Rumelhart, D.E., McClelland, J.L., 1986. Parallel
Distributed processing, MIT press, Cambridge,
Massachusetts.
Schmidt, W.F., Kraaijveld, M.A., Duin, R.P.W., 1992.
Feedforward neural networks with random weights,
Proc. of 11
th
IAPR Int. Conference on Pattern
Recognition Methodology and Systems, 2, 1-4.
Suresh, S., Saraswathi, S., Sundararajan, N., 2010.
Performance enhancement of extreme learning
machine for multi-category sparse cancer
classification, Engineering Application of Artificial
Intelligence, 23, 7, 1149-1157.
Thomas, P., Bloch, G., 1997. Initialization of multilayer
feedforward neural networks for non-linear systems
identification, proc. of the 15
th
IMACS World
Congress WC’97, Berlin, august 25-29, 4, 295-300.
UCI Center for Machine Learning and Intelligent Systems
(accessed 2017), Machine Learning Repository,
https://archive.ics.uci.edu/ml/datasets.html
Waugh, S., 1995. Extending and benchmarking Cascade-
Correlation, PhD thesis, Computer Science
Department, University of Tasmania
Xu, Z., Yao, M., Wu, Z., Dai, W., 2016. Incremental
regularized extreme learning machine and it’s
enhancement, Neurocomputing, 174, 134-142
Zhang, K., Luo, M., 2015. Outlier-robust extreme learning
machine for regression problems, Neurocomputing,
151, 1519-1527
Zhu, Q.Y., Huang, G.B., 2004. Basic ELM algorithms,
http://www.ntu.edu.sg/home/egbhuang/elm_codes.htm
l.