Bosch at CES 2017: New concept car with Driver
Monitor. http://www.bosch-presse.de/pressportal/de/
en/bosch-at-ces-2017-new-concept-car-with-driver-
monitor-84050.html (retrieved March 31, 2017)
Coetzerm R.C., Hanckem G.P. 2009. Driver Fatigue
Detection: A Survey. In: Proc. of AFRICON '09
Nairobi, Kenya, 1-6, doi: 10.1109/AFRCON.2009.
5308101
Dibeklioglu H., Salah A.A., Gevers T. 2012. Are You
Really Smiling at Me? Spontaneous versus Posed
Enjoyment Smiles, In: Proc. European Conference on
Computer Vision (ECCV 2012). 525-538..
Fatigue Risk Assessment. Gain visibility to hidden risk
factors to see the full impact of fatigue and distraction
on your operations. CATERPILAR (2017)
http://www.cat.com/en_US/support/operations/frms/fr
a.html (retrieved April 10, 2017)
Friedrichs, F., Bin Yang 2010. Camera-based Drowsiness
Reference for Driver State Classification under Real
Driving Conditions. In: Proc. of 2010 IEEE Intelligent
Vehicles Symposium, San Diego USA, 101-106. doi:
10.1109/IVS.2010.5548039
Hasan, M., Hossain, F., Thakur, J.M., Podder, P. 2014.
Driver Fatigue Recognition using Skin Color
Modeling. International Journal of Computer
Applications, 97 (16), 34-40.
Ibrahim, M.M., Soraghan, J.J., Petropoulakis, L., Di
Caterina, G. 2015. Yawn analysis with mouth
occlusion detection. Biomedical Signal Processing
and Control. 18, 360-369. doi: 10.1016/
j.bspc.2015.02.006
Kumar, N., Barwar, N.C 2014. Detection of Eye Blinking
and Yawning for Monitoring Driver’s Drowsiness in
Real Time. International Journal of Application or
Innovation in Engineering & Management (IJAIEM).
3 (11), 291-298.
Li, L., Chen, Y., Li, Z. 2009. Yawning detection for
monitoring driver fatigue based on two cameras. In:
Proc. of 12th International IEEE Conference on
Intelligent Transportation Systems, 1-6. doi:
10.1109/ITSC.2009.5309841
Livingstone, S.R., Peck, K., Russo, F.A. 2012.
RAVDESS: The Ryerson Audio-Visual Database of
Emotional Speech and Song. Paper presented at: 22nd
Annual Meeting of the Canadian Society for Brain,
Behaviour and Cognitive Science (CSBBCS),
Kingston, ON
Manu B.N. 2016. Facial features monitoring for real time
drowsiness detection. In: Proc. of 12th International
Conference on Innovations in Information Technology
(IIT), doi: 10.1109/INNOVATIONS.2016.7880030
National Sleep Foundation. http://sleepfoundation.org/
(retrieved April 11, 2017)
Ochocki, M., Sawicki, D. 2016. Facial landmarks
localization using binary pattern analysis, Przeglad
Elektrotechniczny, 92 (11), 43-46. doi:
10.15199/48.2016.11.11
Omidyeganeh, M., Shirmohammadi, S., Abtahi, S.,
Khurshid, A., Farhan, M., Scharcanski, J., Hariri, B.,
Laroche, D., Martel, L. 2016. Yawning Detection
Using Embedded Smart Cameras. IEEE Transactions
on Instrumentation and Measurement. 65 (3), 570-
582. doi: 10.1109/TIM.2015.2507378
Osh in figures 2011: Annex to Report: Occupational
Safety and Health in the Road Transport sector: An
Overview. National Report: Finland. In: Report of the
European Agency for Safety and Health at Work.
Luxembourg: Publications Office of the European
Communities.
Rodzik, K., Sawicki, D. 2015. Recognition of the human
fatigue based on the ICAAM algorithm. In: Proc. of
the 18th International Conference on Image Analysis
and Processing (ICIAP 2015). LNCS 9280 Springer.
373-382. doi: 10.1007/978-3-319-23234-8_35
Saradadevi, M., Bajaj, P. 2008. Driver Fatigue Detection
Using Mouth and Yawning Analysis. International
Journal of Computer Science and Network Security, 8
(6), 183-188.
Sigari, M-H., Pourshahabi, M-R., Soryani, M., Fathy, M.
2014. A Review on Driver Face Monitoring Systems
for Fatigue and Distraction Detection. International
Journal of Advanced Science and Technology, 64, 73-
100. doi: 10.14257/ijast.2014.64.07
The Yawn-O-Meter (How Long Can You Last?)
https://www.youtube.com/watch?v=AJXX4vF6Zh0
(retrieved February 30, 2015)
Viola, P., Jones, M. 2001. Rapid Object Detection using a
Boosted Cascade of Simple Features. Computer Vision
and Pattern Recognition (CVPR). 1, 511-518. doi:
10.1109/CVPR.2001.990517
Wang, T., Pendeli, S. 2005. Yawning detection for
determining driver drowsiness. In: Proc of IEEE Int.
Workshop VLSI Design & Video Tech. 373-376. doi:
10.1109/IWVDVT.2005.1504628
Wang, T., Shi, P. 2005. Yawning detection for
determining driver drowsiness. In: Proc. of 2005 IEEE
International Workshop on VLSI Design and Video
Technology, 373-376. doi: 10.1109/IWVDVT.2005.
1504628
Want a free mua face chart? 2010.
http://smashinbeauty.com/want-a-free-mua-face-chart/
Retrieved 25 January 2013
Weiwei Liu. Haixin Sun, Weijie Shen 2010. Driver
Fatigue Detection through Pupil Detection and
Yawning Analysis. In: Proc. of 2010 International
Conference on Bioinformatics and Biomedical
Technology (ICBBT), Chengdu China, 404-407. doi:
10.1109/ICBBT.2010.5478931