
Diagnostic Methods in Athletic Training, pages 109–
116. University of Ljubljana.
Deutscher, J. and Reid, I. (2005). Articulated body motion
capture by stochastic search. Int. J. Comput. Vision,
61(2):185–205.
Elliott, N., Choppin, S., Goodwill, S. R., and Allen, T.
(2014). Markerless tracking of tennis racket motion
using a camera. Procedia Engineering, 72:344–349.
The Engineering of Sport 10.
Hamatani, T., Sakaguchi, Y., Uchiyama, A., and Higashino,
T. (2016). Player identification by motion features in
sport videos using wearable sensors. In 2016 Ninth
International Conference on Mobile Computing and
Ubiquitous Networking (ICMU), pages 1–6.
Iskra, J. (2012). Scientific research in hurdle races. AWF
Katowice.
John, V., Trucco, E., and Ivekovic, S. (2010). Markerless
human articulated tracking using hierarchical particle
swarm optimisation. Image and Vision Computing,
28(11):1530–1547.
Kennedy, J. and Eberhart, R. (1995). Particle swarm opti-
mization. In Proc. of IEEE Int. Conf. on Neural Net-
works, volume 4, pages 1942–1948. IEEE Press, Pis-
cataway, NJ.
Kim, Y. and Cho, K. S. (2016). Robust multi-object
tracking to acquire object oriented videos in indoor
sports. In 2016 International Conference on Infor-
mation and Communication Technology Convergence
(ICTC), pages 1104–1107.
Krzeszowski, T., Przednowek, K., Wiktorowicz, K., and
Iskra, J. (2016). Estimation of hurdle clearance pa-
rameters using a monocular human motion tracking
method. Computer Methods in Biomechanics and
Biomedical Engineering, 19(12):1319–1329. PMID:
26838547.
Kwolek, B., Krzeszowski, T., Gagalowicz, A., Woj-
ciechowski, K., and Josinski, H. (2012). Real-
time multi-view human motion tracking using particle
swarm optimization with resampling. In Perales, F.,
Fisher, R., and Moeslund, T., editors, Articulated Mo-
tion and Deformable Objects, volume 7378 of Lecture
Notes in Computer Science, pages 92–101. Springer
Berlin Heidelberg.
Panagiotakis, C., Grinias, I., and Tziritas, G. (2006). Auto-
matic human motion analysis and action recognition
in athletics videos. In 14th European Signal Process-
ing Conference, pages 1–5.
Per
ˇ
s, J. and Kovacic, S. (2000). A system for tracking
players in sports games by computer vision. Elek-
trotehni
ˇ
cni vestnik, 67(5):281–288.
Ramasso, E., Panagiotakis, C., Rombaut, M., Pellerin, D.,
and Tziritas, G. (2009). Human shape-motion analy-
sis in athletics videos for coarse to fine action/activity
recognition using transferable belief model. Elec-
tronic Letters on Computer Vision and Image Anal-
ysis, 7(4):32–50.
Reyes, C. E., Mojica, E. F., Correa, C. V., and Arguello, H.
(2016). Algorithm for underwater swimmer tracking
using the HSV color model and compressive sensing.
In 2016 IEEE Colombian Conference on Communica-
tions and Computing (COLCOM), pages 1–5.
Salo, A., Grimshaw, P. N., and Marar, L. (1997). 3-D
biomechanical analysis of sprint hurdles at different
competitive levels. Medicine and Science in Sports
and Exercise, 29(2):231–237.
Sheets, A. L., Abrams, G. D., Corazza, S., Safran, M. R.,
and Andriacchi, T. P. (2011). Kinematics differences
between the flat, kick, and slice serves measured us-
ing a markerless motion capture method. Annals of
Biomedical Engineering, 39(12):3011–3020.
Sidenbladh, H., Black, M. J., and Fleet, D. J. (2000).
Stochastic tracking of 3D human figures using 2D im-
age motion. In European Conf. on Computer Vision,
pages 702–718.
Tsai, R. (1987). A versatile camera calibration technique
for high-accuracy 3D machine vision metrology using
off-the-shelf tv cameras and lenses. IEEE Journal on
Robotics and Automation, 3(4):323–344.
Zhang, Y., Feng, S., Sun, X., and Yang, H. (2017). Re-
search on tracking algorithm for fast-moving target in
sport video. Journal of Computational and Theoreti-
cal Nanoscience, 14(1):230–236.