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Abstract: We extend the classical approach of hypothesis testing to the fuzzy environment. We propose a method based
on fuzziness of data and on fuzziness of hypotheses at the same time. The fuzzy p-value with its α-cuts
is provided and we show how to defuzzify it by the signed distance method. We illustrate our method by
numerical applications where we treat a one and a two sided test. For the one-sided test, applying our method
to the same data and performing tests on the same significance level, we compare the defuzzified p-values
between different cases of null and alternative hypotheses.

1 INTRODUCTION AND
MOTIVATION

The so-called classical approach of the statistical in-
ference is the most used one in statistics. Its exten-
sion to the fuzzy environment was of a big discussion
in many research papers in the last decade. Several
testing methods and approaches in the fuzzy context
were treated. We mention for example (Filzmoser
and Viertl, 2004), (Parchami et al., 2010), (Grze-
gorzewski, 2000) and many others. For instance,
(Grzegorzewski, 2000) proposed a fuzzy test based
on confidence intervals. This test leads to a fuzzy de-
cision, which provides a degree of conviction, mean-
ing a degree of acceptability of the null and alterna-
tive hypotheses. From another side, (Filzmoser and
Viertl, 2004) extended the classical test to a fuzzy test
asserting that the fuzziness is a matter of data. They
proposed a fuzzy p-value and a “three decision” pro-
cedure where no rejection of both null and alternative
hypotheses is considered. (Parchami et al., 2010) rea-
soned similarly to (Filzmoser and Viertl, 2004) but as-
sumed that the fuzziness is coming from the hypothe-
ses instead of the data.

On the other hand, defuzzifying a fuzzy p-value
could be in several situations important to make a
decision. (Grzegorzewski, 2001) presented differ-
ent defuzzification operators to defuzzify his pro-
posed fuzzy p-value. In the same way, (Berkachy and
Donzé, 2017), based on the work of (Grzegorzewski,

2000), described how one can defuzzify a fuzzy deci-
sion by the so-called signed distance defuzzification
method. This method was basically used for instance
by (Berkachy and Donzé, 2016) in the context of eval-
uating linguistic questionnaires.

In this paper, we reconsider the tests’ procedures
described by (Filzmoser and Viertl, 2004) and (Par-
chami et al., 2010). We propose an inference method
based on both fuzzy data and fuzzy hypotheses. We
also put our attention on fuzzy p-value with its α-cuts,
and show how to apply the signed distance method to
defuzzify this fuzzy p-value. We know that while the
defuzzification of a fuzzy set reduces some informa-
tions of it, defuzzifying a fuzzy p-value can be useful
in several cases of decision making. At last, we give
two numerical examples of a one-sided and a two-
sided tests. On the same occasion, we play with a
set of different fuzzy null and alternative hypotheses
in order to be able to compare and understand the dif-
ferences between cases.

To summarize, we present in Section 2 some use-
ful definitions and notations. The Section 3 is devoted
to a brief presentation of the signed distance defuzzi-
fication method. In Section 4, we recall briefly the
classical testing approach, and we describe the proce-
dure of testing fuzzy hypotheses with fuzzy data. We
finally end in Section 5 with two numerical examples.
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2 DEFINITIONS AND
NOTATIONS

Let us recall some fundamental definitions and nota-
tions useful in further sections.

Definition 2.1 (Fuzzy Set).
If A is a collection of objects denoted generically by x
then a fuzzy set X̃ in A is a set of ordered pairs:

X̃ = {(x,µX̃ (x)) : x ∈ A}, (1)

where µX̃ (x) is the membership function of x in X̃
which maps A to the closed interval [0,1] that char-
acterizes the degree of membership of x in X̃ .

Definition 2.2 (Fuzzy Number).
A fuzzy number X̃ is a convex and normalized fuzzy set
on R, such that its membership function is continuous
and its support is bounded.

Definition 2.3 (α-cut of a Fuzzy Number).
The α-cut of a fuzzy number X̃ is a non-fuzzy set de-
fined as:

X̃α = {x ∈ R : µX̃ (x)> α}. (2)

The fuzzy number X̃ can be represented by the family
set {X̃α : α ∈ [0,1]} of its α-cuts.

The α-cut of a fuzzy number X̃ is the closed in-
terval [X̃L

α , X̃
R
α ]. X̃L

α = inf{x ∈ R : µX̃ (x) > α)} is its
left α-cut and X̃R

α = sup{x ∈ R : µX̃ (x)> α)} its right
one. We note that the α-cut of a fuzzy number X̃ is
a union of finite compact and bounded intervals. Fur-
thermore, the least-upper bound property generalized
to ordered sets and the extension principle induces the
following expression of the membership function of X̃
(see (Viertl, 2011)):

µX̃ (x) = max{αIX̃α(x) : α ∈ [0,1]}, (3)

where IX̃α(x) is the following indicator function:

IX̃α(x) = I{x∈R;µX̃≥α}(x)

=

{
1 if µX̃ (x)≥ α,
0 otherwise.

(4)

Definition 2.4 (Triangular Fuzzy Number).
A triangular fuzzy number X̃ is a fuzzy number with
membership function given as follows:

µX̃ (x) =





x−u
v−u if u < x≤ v,
x−w
v−w if v < x≤ w,
0 elsewhere.

(5)

It is common to represent a triangular fuzzy num-
ber by the tuple of three values u, v and w, i.e. X̃ =
(u,v,w), where u < v < w ∈R. For a triangular fuzzy
number, the left and right α-cuts X̃L

α and X̃R
α are given

respectively by
{

X̃L
α = u+(v−u)α,

X̃R
α = w− (w− v)α.

(6)

3 THE SIGNED DISTANCE
DEFUZZIFICATION METHOD

The signed distance defuzzification method was
described mainly by (Yao and Wu, 2000) and (Lin
and Lee, 2010). (Berkachy and Donzé, 2016) use
it extensively in the context of evaluating linguistic
questionnaires. The method appears to have nice
properties and will be implemented in our test proce-
dure for the defuzzification of the fuzzy p-values. Let
us define briefly this measure.

Definition 3.1. The signed distance d0(e,0) mea-
sured from 0 for a real value e in R is e.

Definition 3.2. Let X̃ be a fuzzy set on R, such as
X̃ = {(x,µX̃ (x))|x ∈ R} where µX̃ (x) is the member-
ship function of x in X̃ . Suppose that the α-cuts X̃L

α
and X̃R

α exist, and as a function of α are integrable for
α ∈ [0,1]. The signed distance of X̃ measured from
the fuzzy origin 0̃ is:

d(X̃ , 0̃) =
1
2

∫ 1

0
[X̃L

α + X̃R
α ]dα. (7)

4 TESTING FUZZY
HYPOTHESES WITH FUZZY
DATA

(Filzmoser and Viertl, 2004) and (Parchami et al.,
2010) were ones of many that treated the problem of
testing hypotheses in the fuzzy environment. They
introduced as instance the concept of fuzzy p-value.
Inspired by their methods, we propose a hypotheses
testing method based on fuzzy hypotheses and fuzzy
data at the same time. The signed distance will be
applied in order to defuzzify the fuzzy p-value. But,
first, let us recall the main ideas of the classical ap-
proach.



4.1 Testing Hypotheses in the Classical
Approach

We consider a population described by a probability
distribution Pθ depending on the parameter θ, and be-
longing to a family of distributions P= {Pθ : θ ∈ Θ}.
Testing hypotheses on a parameter θ in the classical
approach consists on considering a null hypothesis
denoted by H0, H0: θ ∈ ΘH0 and an alternative one
denoted by H1, H1: θ ∈ ΘH1 . ΘH0 and ΘH1 are
subsets of Θ such that ΘH0 ∩ΘH1 = /0. A test statistic
is a function of a random sample Y1, . . . ,Yn used in
testing the null hypothesis against the alternative one.
We call T such a test statistic, where T : Rn 7→ R. For
this test, two decisions are often treated: not reject
the null hypothesis H0 or reject the null hypothesis
H0. However, the Neyman-Pearson testing approach
(Neyman and Pearson, 1933) could consider the pos-
sibility of having a three decision procedure where
a third case appears: both the null and alternative
hypotheses are neither rejected or not rejected.

The hypothesis testing dilemma is reduced to a
decision problem based on the test statistic T , where
the space of possible values of T is decomposed into
a rejection region R and its complement Rc. Three
forms of R are possible depending on the alternative
hypotheses H1.

Let us suppose the following three tests:

1. H0 : θ≥ θ0 vs. H1 : θ < θ0; (8)
2. H0 : θ≤ θ0 vs. H1 : θ > θ0; (9)
3. H0 : θ = θ0 vs. H1 : θ 6= θ0; (10)

where θ is the parameter to test and θ0 a particular
value of this parameter.

Then, we would reject the null hypothesis H0 if re-
spectively:

1. T ≤ tl (one-sided test); (11)
2. T ≥ tr (one-sided test); (12)
3. T /∈ (ta, tb) (two-sided test); (13)

where tl , tr, ta and tb are quantiles of the distribution
of T .

From another side, we denote by δ the significance
level of the test. The quantiles of the distribution tl ,
tr, ta, and tb are found such that the following proba-
bilities hold:

1. P(T ≤ tl) = δ, (14)
2. P(T ≥ tr) = δ, (15)

3. P(T ≤ ta) = P(T ≥ tb) =
δ
2
. (16)

By this method, we decide to reject the null hypoth-
esis if the value of the test statistic t = T (y1, . . . ,yn)
falls into the rejection region R.

A pratical way to take a decision is to calculate the
p-value in order to decide whether we reject or don’t
the null hypothesis H0. Notice that a p-value depends
on different elements as, for instance, the sample and
its distribution, the boundary of the null hypothesis,
the distribution of the test statistic and its observed
value. We define a p-value pθ∗ as function of the
boundary θ∗ of the null-hypothesis. This p-value for
the three cases (11), (12) and (13) can be written re-
spectively as follows:

1. pθ∗ = Pθ∗(T ≤ t), (17)
2. pθ∗ = Pθ∗(T ≥ t), (18)
3. pθ∗ = 2min[Pθ∗(T ≤ t),Pθ∗(T ≥ t)], (19)

where “Pθ∗” means that the probability distribution
depends on the boundary θ∗.

The decision is made by comparing the p-value to
the significance level δ: If the p-value is smaller than
δ, we reject the null hypothesis H0. Otherwise, we
don’t reject it.

4.2 Fuzzy Hypotheses

In their paper, (Filzmoser and Viertl, 2004) discussed
the test of hypotheses in the case of fuzzy data.
However, (Parchami et al., 2010) asserted that the
fuzziness is rather coming from the hypothesis. In
the following, we are treating a case inspired by the
above papers but where both data and hypotheses are
fuzzy. First, let us define a fuzzy hypothesis.

Definition 4.1 (Fuzzy Hypothesis).
A fuzzy hypothesis H̃ on the parameter θ, denoted as
“H̃ : θ is H”, is a fuzzy subset of the parameter space
Θ with its corresponding membership function µH̃ .

Remark 4.1. A given fuzzy hypothesis H̃ reduces to
a crisp hypothesis H when the membership function
µH̃ = IΘ.



It is common practice to postulate as membership
functions of a fuzzy left one-sided hypothesis (an in-
creasing function) or of a fuzzy right one-sided hy-
pothesis (a decreasing function) respectively the fol-
lowing functions:

µH̃OL(x) =





0 if x < u;
x−u
v−u if u≤ x < v;
1 if x≥ v.

(20)

µH̃OR(x) =





1 if x≤ u;
x−v
u−v if u < x≤ v;
0 if x > v;

(21)

In that case, we simply note these fuzzy hypotheses
as H̃OL = (u,v) and H̃OR = (u,v).

A fuzzy two-sided hypothesis H̃T is gener-
ally treated as a triangular fuzzy number, i.e.
H̃T = (u,v,w), with membership function (5).

Consider now a crisp random sample Y1, . . . ,Yn
with probability distribution Pθ and a corresponding
fuzzy random sample X̃ = (X̃1, . . . , X̃n) where X̃i is a
fuzzy number as described in Definition 2.2. We de-
note by µX̃ the membership function of X̃ , where µX̃ :
Rn→ [0,1]. We suppose that it exists a given value of
x, x considered as a n-dimensional vector, for which
µX̃ (x) reaches 1, and that the α-cuts of µX̃ build a
closed compact and convex subset of Rn. On the other
hand, consider furthermore a real valued function φ
such as φ: Rn→R. Denote by the fuzzy number Z̃ the
result of applying the function φ to the fuzzy random
sample, i.e. Z̃ = φ(X̃1, . . . , X̃n). Then, by the extension
principle (Zadeh, 1965), the membership function µZ̃
of Z̃ is written in the following manner:

µZ̃(z)=

{
sup{µX̃ (x) : φ(x) = z} if ∃x : φ(x) = z,
0 if @x : φ(x) = z,

(22)
for all z ∈ R. Furthermore, the α-cuts of Z̃ are given
by:

Z̃α = [min
x∈X̃α

φ(x),max
x∈X̃α

φ(x)], (23)

for all α ∈ (0,1] (Viertl, 2011).

Finally, we have to define the fuzzy boundaries of
fuzzy hypotheses.

Definition 4.2 (Boundary of a Hypothesis).
The boundary H̃∗ of a hypothesis H̃ : θ is H, is a fuzzy
subset of Θ, with membership function µH∗ .

As instance, the fuzzy boundaries corresponding
to the tests (8), (9) and (10) are given respectively by:

1. H̃∗ = H if θ≤ θ0, 0 otherwise,

(H̃ is left one-sided and µH̃OL increasing);

2. H̃∗ = H if θ≥ θ0, 0 otherwise,

(H̃ is right one-sided and µH̃OR decreasing);

3. H̃∗ = H, (H̃ is two-sided).

4.3 Fuzzy p-value

Considering hypotheses as fuzzy let us as well see p-
values as fuzzy ones, and in this case taking α-cuts
of the fuzzy p-values can help to evaluate the results
of the tests. Taking in consideration the three possi-
ble rejection regions as defined in (11), (12) and (13),
the following proposition shows how to calculate the
corresponding α-cuts.
Proposition 4.1. Given a test procedure based on
fuzziness of data and hypotheses. Considering the
three rejection regions (11), (12) and (13), the α-cuts
of the fuzzy p-value p̃ are given by:

1. p̃α = [PθR(T ≤ t̃L
α),PθL(T ≤ t̃R

α)]; (24)

2. p̃α = [PθL(T ≥ t̃R
α),PθR(T ≥ t̃L

α)]; (25)

3. p̃α =

{
[2PθR(T ≤ t̃L

α),2PθL(T ≤ t̃R
α)] if Al > Ar,

[2PθL(T ≥ t̃R
α),2PθR(T ≥ t̃L

α)] if Al ≤ Ar;
(26)

for all α ∈ (0,1], where t̃L
α and t̃R

α are the left and right
α-cuts of t̃ = φ(X̃1, . . . , X̃n), θL and θR are the α-cuts of
the boundary of H̃0, Al is the area under the member-
ship function µt̃ of the fuzzy number t̃ on the left side
of the median, and Ar is the one on the right side. In
this case, one has to decide on which side the median
is located based on the biggest amount of fuzziness.

Proof 4.1. Since we are treating the case of both
fuzzy data and fuzzy hypotheses, the proof of the
Proposition 4.1 will be done in three steps:

1. According to the above sections, the resulting
fuzzy value t̃ = T (X̃1, . . . , X̃n) is fuzzy with its
membership function µt̃ . We denote by supp(µt̃),
the support of µt̃ given by supp(µt̃) = {x ∈ R :
µt̃(x) > 0}. Using the extension principle, (Filz-
moser and Viertl, 2004) wrote the (precise) p-
value p for T̃ for a one-sided test respectively to
cases (8) and (9) as follows:

1. p = P(T ≤ t = max supp(µt̃)); (27)
2. p = P(T ≥ t = min supp(µt̃)). (28)



Our purpose at this moment is to write the α-cuts
of the fuzzy p-value p̃. Hence, we know that µt̃
is a membership function and all its α-cuts are
compact and closed on R, then we can define the
α-cuts of the p-value p̃D related to (27) and (28)
by

1. p̃FVα= [P(T ≤ t̃L
α),P(T ≤ t̃R

α)]; (29)

2. p̃FVα= [P(T ≥ t̃R
α),P(T ≥ t̃L

α)]. (30)

The same procedure can be easily written for the
two-sided test.

2. From another side, we want to extend these for-
mulas to the case of fuzzy hypothesis. (Parchami
et al., 2010) related the fuzziness to the hypothe-
sis and presented the α-cuts of the fuzzy p-value
in the following form:

1. p̃PAα = [PθR(T ≤ t),PθL(T ≤ t)]; (31)
2. p̃PAα = [PθL(T ≥ t),PθR(T ≥ t)]; (32)

3. p̃PAα =

{
[2PθR(T ≤ t),2PθL(T ≤ t)] if Al > Ar,

[2PθL(T ≥ t),2PθR(T ≥ t)] if Al ≤ Ar;
(33)

Referring to the Equations (17), (18), (29), (30),
to the Definition 4.1 and to the fuzzy p-value dis-
cussed by (Parchami et al., 2010), we get p̃R

α and
p̃R

α, the left and right α-cuts of the fuzzy p-values
based on fuzziness of data and hypotheses given
by Proposition 4.1.

3. We finally have to be sure that the properties of
the membership function are fulfilled: the facts
that µt̃ and µH̃0

are membership functions and
the probabilities are restricted to [0,1] induce
that the resulting membership functions of p̃
are between 0 and 1 and reach 1 for a given
value. Furthermore, the α-cuts of each case
form a closed finite interval and thus they are
compact and convex subsets of R for all α∈ (0,1].

For the decision making, (Filzmoser and Viertl,
2004) asserted that a three-decision problem is
adopted based on the left and right α-cuts of p̃. For a
test with a significance level δ, the decisions are made
by the following rules:

• p̃R
α < δ: reject the null hypothesis;

• p̃L
α > δ: not reject the null hypothesis;

• δ ∈ [p̃L
α, p̃R

α]: both null and alternative hypothesis
are neither rejected or not.

4.4 Defuzzification of the Fuzzy p-value
by the Signed Distance

As mentioned above, the signed distance method is
an attractive one to defuzzify fuzzy numbers. Thus,
we intend to apply this operator in order to defuzzify
the fuzzy p-value and understand whether the deci-
sion made with resulting p-value is similar to the one
in the classical and fuzzy approaches. The idea is to
consider the α-cuts of the fuzzy p-values found in the
previous section. We use the equation (7) to defuzzify
the fuzzy p-value given in equations (24), (25) and
(26). The defuzzified p-values are written as follows:

1. d(p̃, 0̃) =
1
2

∫ 1

0
(PθR(T ≤ t̃L

α)+PθL(T ≤ t̃R
α))dα;

(34)

2. d(p̃, 0̃) =
1
2

∫ 1

0
(PθL(T ≥ t̃R

α)+PθR(T ≥ t̃L
α))dα;

(35)

3. d(p̃, 0̃) =





1
2
∫ 1

0 (2PθR(T ≥ t̃L
α)+2PθL(T ≥

t̃R
α))dα, if Al > Ar,

1
2
∫ 1

0 (2PθL(T ≤ t̃R
α)+2PθR(T ≤

t̃L
α))dα, if Al ≤ Ar.

(36)
To interpret, the decision of this testing problem

using the defuzzified p-values is similar to the classi-
cal approach where two main decisions are taken into
account:

• d(p̃, 0̃)< δ: reject the null hypothesis;

• d(p̃, 0̃)> δ: not reject the null hypothesis;

• d(p̃, 0̃) = δ (a rare case): one should decide
whether to reject or not the null hypothesis.

The decision of no rejecting H0 or H1 doesn’t oc-
cur in this case since the p-value is now on crisp. We
remember that in the fuzzy sense, the no-decision case
is considered. Thus, if one has to defuzzify the p-
value, this case will no longer be possible. Not detect-
ing the no-decision region might be a disadvantage of
defuzzifying the fuzzy p-value.

5 NUMERICAL APPLICATIONS

In this section, we propose two numerical applica-
tions to help the reader to understand the reasoning.
The first one treats a one-sided test as (9), and the
second one a two-sided test as (10).



Example 5.1. Consider a random sample of size n =
9 from a normal distribution with an unknown mean
and a standard deviation of 1, N (µ,1). The aim is to
test on the significance level δ = 0.05 the following
hypotheses:

H̃0 : µ is approximately 15,

H̃1 : µ is approximately bigger than 15.

Suppose that not only the hypotheses are fuzzy but
the sample as well. Let us assume that the fuzzy
null hypothesis is given by the triangular fuzzy num-
ber H̃T

0 = (14.8,15,15.2) and the alternative one by
H̃OR

1 = (15,16). These hypotheses are shown in Fig-
ure 2. We write the α-cuts of H̃T

0 as:

(H̃T
0 )α =

{
(H̃T

0 )
L
α = 14.8+0.2α;

(H̃T
0 )

R
α = 15.2−0.2α.

(37)

We assume furthermore that the membership func-
tion of the observed fuzzy sample mean X̃ is given by
the following:

µX̃ (x) =





2x−31 if 15.5 < x≤ 16;
−2x+33 if 16 < x≤ 16.5;
0 otherwise;

(38)

with the corresponding α-cuts:

X̃α =

{
X̃

L
α = 15.5+0.5α;

X̃
R
α = 16.5−0.5α.

(39)

The rejection region in this one-sided test is given
by equation (12). Hence, the expression of the corre-
sponding α-cuts p̃α of the fuzzy p-value are given by
equation (25). Combining all the previous informa-
tions, p̃α is as follows:

p̃α = [
∫ ∞

θ1(α)
(2π)−

1
2 exp(

−u2

2
)du,

∫ ∞

θ2(α)
(2π)−

1
2 exp(

−u2

2
)du], (40)

where θ1(α) et θ2(α) are the following functions of α
based on Equations 37 and 39:

θ1(α) =
X̃

R
α− (H̃T

0 )
L
α

σ /
√

n
= 5.1−2.1×α

and

θ2(α) =
X̃

L
α− (H̃T

0 )
R
α

σ /
√

n
= 0.9+2.1×α.1

1The sum SX̃1,X̃2
of two fuzzy numbers X̃1 and X̃2 with

The membership function induced by the fuzzy p-
value p̃ is shown in Figure 3. Since the fuzzy p-value
and the significance level overlap, we cannot make
any decision visually. In order to make one, we de-
fuzzify the fuzzy p-value. Applying the signed distance
method (equation (35)), we get the following result:

d(p̃, 0̃) =
1
2

∫ 1

0
(PθL(T ≥ t̃R

α)+PθR(T ≥ t̃L
α))dα

=
1
2

∫ 1

0
(
∫ ∞

5.1−2.1×α
(2π)−

1
2 exp(

−u2

2
)du+

∫ ∞

0.9+2.1×α
(2π)−

1
2 exp(

−u2

2
)du)dα

= 0.0239.

We remark that the defuzzified p-value (0.0239)
is smaller than the significance level (0.05). In this
case, the decision is to reject the null hypothesis at
the level δ = 0.05.

Furthermore, we are interested in understanding
the influence of the form of the fuzzy hypotheses on
the decision of the test. Let us view some variations of
the fuzzy hypotheses. Table 1 shows the tests where
we change the null or the alternative fuzzy hypothe-
ses of Example 5.1. Figure 1 displays the member-
ship functions of the fuzzy p-values obtained from all
these tests. We can see that although the fuzzy al-
ternative hypothesis determines the rejection region,
then it does not influence anymore the decision of the
test. Hence, the defuzzified p-value is sensitive to the
fuzzy null hypothesis. From another side, if one has
to compare between defuzzified p-values of the tests
simulated versus the fuzzy p-values illustrated in Fig-
ure 1, we can say that the highest p-value corresponds
to the largest spreaded fuzzy p-value. It is the oppo-
site for the lowest one. Therefore, we can say that
the defuzzified p-value can be a relevant indicator of
fuzziness of the null hypothesis in order to make the
most convenient decision.

Example 5.2. Consider again a random sample of
size n = 49 from a normal distribution with an un-
known mean and a standard deviation of 1, N (µ,1).

their corresponding α-cuts X̃1α = [X̃1
L
α, X̃1

R
α] and X̃2α =

[X̃2
L
α, X̃2

R
α] is written by:

SX̃1,X̃2
= X̃1α + X̃2α = [X̃1

L
α + X̃2

L
α, X̃1

R
α + X̃2

R
α],

and their difference DX̃1,X̃2
given by:

DX̃1,X̃2
= X̃1α− X̃2α = [X̃1

L
α− X̃2

R
α, X̃1

R
α− X̃2

L
α].



Table 1: Testing different hypotheses on the significance level δ = 0.05 - Example 5.1.

Test Fuzzy null hypothesis Fuzzy alternative hypothesis Defuzzified p-value Decision
1 H̃T

0 = (14.8,15.0,15.2) H̃OR
1 = (15,16) 0.0239 Reject the null hypothesis

2 H̃T
0 = (14.8,15.0,15.2) H̃OR

1 = (16,17) 0.0239 Reject the null hypothesis
3 H̃T

0 = (14.8,15.0,15.2) H̃OR
1 = (16,16) 0.0239 Reject the null hypothesis

4 H̃T
0 = (15.0,15.0,15.0) H̃OR

1 = (15,16) 0.0098 Reject the null hypothesis
5 H̃T

0 = (14.6,15.0,15.4) H̃OR
1 = (15,16) 0.0494 Slightly Reject the null hypothesis

6 H̃T
0 = (14.0,15.0,16.0) H̃OR

1 = (15,16) 0.1699 Not Reject the null hypothesis
7 H̃T

0 = (14.9,15.0,15.1) H̃OR
1 = (15,16) 0.0156 Reject the null hypothesis
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Figure 1: Membership functions of the fuzzy p-values corresponding to the tests in Table 5.1 at the significance level δ = 0.05.

The aim is to test on the significance level δ = 0.05
the following hypotheses

H̃0 : µ is near 100,

H̃1 : µ is away from 100.

Let us suppose that the null and alternative hypothe-
ses are fuzzy and given by the fuzzy triangular num-
bers H̃T

0 = (99.7,100,100.3) and the alternative one
by H̃T

1 = 1− H̃T
0 as seen in Figure 4. The α-cuts of

H̃T
0 are:

(H̃T
0 )α =

{
(H̃T

0 )
L
α = 99.7+0.3α;

(H̃T
0 )

R
α = 100.3−0.3α.

(41)

Furthermore let us assume that the α-cuts of the
observed fuzzy sample mean X̃ are given by the fol-
lowing:

X̃α =

{
X̃

L
α = 100.4+0.6α;

X̃
R
α = 101.6−0.6α.

(42)

The rejection region in this two-sided test is given
by the equation (13). We note that in a standardized
normal distribution, the median is equal to the mean,
thus we consider that the fuzzy median is equal to the
one expressed by the null hypothesis. The α-cuts p̃α of
the fuzzy p-value can be computed by equation (26).
And since we are in the case of Al ≤ Ar, we get that
p̃α is as follows:

p̃α = [2
∫ ∞

θ1(α)
(2π)−

1
2 exp(

−u2

2
)du,

2
∫ ∞

θ2(α)
(2π)−

1
2 exp(

−u2

2
)du]. (43)

where θ1(α) et θ2(α) are the following functions of
α:

θ1(α) =
X̃

R
α− (H̃T

0 )
L
α

σ /
√

n
= 0.9+8.1×α

and

θ2(α) =
X̃

L
α− (H̃T

0 )
R
α

σ /
√

n
= 17.1−8.1×α.



Figure 5 shows the fuzzy p-value at the signifi-
cance level δ = 0.05.

We defuzzify this fuzzy p-value by the signed dis-
tance method using the equation (36) and we obtain
the following distance:

d(p̃, 0̃) =
1
2

∫ 1

0
2× (PθL(T ≥ t̃R

α)+2×PθR(T ≥ t̃L
α))dα

=
1
2

∫ 1

0
(2×

∫ ∞

0.9+8.1×α
(2π)−

1
2 exp(

−u2

2
)du+

2×
∫ ∞

17.1−8.1×α
(2π)−

1
2 exp(

−u2

2
)du)dα

= 0.0123989.

The defuzzified p-value (0.0123989) is smaller
than the significance level (0.05), then the decision
will be to reject the null hypothesis at the level δ =
0.05.

6 CONCLUSION

In this work, we presented a hypothesis testing proce-
dure when both data and hypotheses are fuzzy. We
introduced as well a fuzzy p-value with its α-cuts.
We discussed after the defuzzification of this fuzzy p-
value by the so-called ”signed distance method”. We
finally proposed numerical examples of one-sided and
two-sided tests, in addition to a small comparison be-
tween different null and alternative hypotheses with
the same hypothetical sample at the same significance
level. To conclude, despite the fact that the defuzzi-
fication step reduces the amount of information con-
tained in a fuzzy p-value, we thought that in many
cases defuzziying these p-values with the signed dis-
tance can be of a high relevance. In addition, since
testing hypotheses on linguistic variables is in most
cases complicated and not feasible in classical statis-
tics, proposing such an approach to deal with fuzzi-
ness and obtaining a p-value deserves merit in deci-
sion making. Indeed, we can see the defuzzied p-
value as an ”informal indicator” of rejecting or not a
given null hypothesis. For further researches, we will
be interested in testing the method with many other
statistical distributions.
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Figure 2: The membership functions of the null and the alternative hypotheses - Example 5.1.
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Figure 3: The membership function of the fuzzy p-value p̃α - Example 5.1.
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Figure 4: The membership functions of the null and the alternative hypotheses - Example 5.2.
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Figure 5: The membership function of the fuzzy p-value p̃α - Example 5.2.


