termines an operator list to be executed on the slave
according to this knowledge. It would be interesting
to have two selection strategies on the master, another
on the worker. The master could send the parameters
to the worker selection policy instead of pre-setting
an operator list because we know that the operator to
use is not necessarily the same according to the stage
of the search state of a worker.
In another perspective, an asynchronous architec-
ture would make it possible to improve the time of
use of the slave processors, especially when the com-
putation time of the fitness varies according to the
state of the search. Moreover, the batch does not im-
prove the synchronization between the different com-
pute nodes. An asynchronous architecture makes it
possible to better exploit the network resources.
REFERENCES
Armas, R., Aguirre, H., Zapotecas-Mart
´
ınez, S., and
Tanaka, K. (2016). Traffic signal optimization: Mini-
mizing travel time and fuel consumption. In EA 2015,
pages 29–43. Springer.
Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-
time analysis of the multiarmed bandit problem. Ma-
chine learning, 47(2-3):235–256.
Baudi
ˇ
s, P. and Po
ˇ
s
´
ık, P. (2014). Online black-box algorithm
portfolios for continuous optimization. In PPSN XIII,
pages 40–49. Springer.
Candan, C., Go
¨
effon, A., Lardeux, F., and Saubion, F.
(2013). Non stationary operator selection with island
models. In GECCO, pages 1509–1516.
DaCosta, L., Fialho, A., Schoenauer, M., and Sebag, M.
(2008). Adaptive operator selection with dynamic
multi-armed bandits. In GECCO, page 913. ACM
Press.
Dasgupta, D. and Michalewicz, Z. (2013). Evolutionary
algorithms in engineering applications. Springer Sci-
ence & Business Media.
Derbel, B. and Verel, S. (2011). DAMS: distributed adap-
tive metaheuristic selection. In GECCO, pages 1955–
1962. ACM Press.
Dubreuil, M., Gagne, C., and Parizeau, M. (2006). Analy-
sis of a master-slave architecture for distributed evolu-
tionary computations. IEEE T. on Systems, Man, and
Cybernetics: Part B, 36:229–235.
Eiben, A. E., Michalewicz, Z., Schoenauer, M., and Smith,
J. E. (2007). Parameter control in evolutionary algo-
rithms. In Parameter Setting in Evolutionary Algo-
rithms, pages 19–46. Springer.
Fialho, A., Da Costa, L., Schoenauer, M., and Sebag, M.
(2009). Dynamic multi-armed bandits and extreme
value-based rewards for adaptive operator selection in
evolutionary algorithms. In LION’09, volume 5851,
pages 176–190. Springer.
Fialho, A., Da Costa, L., Schoenauer, M., and Sebag, M.
(2010). Analyzing bandit-based adaptive operator se-
lection mechanisms. Annals of Mathematics and Arti-
ficial Intelligence, 60:25–64.
Garc
´
ıa-Valdez, M., Trujillo, L., Merelo-Gu
´
ervos, J. J., and
Fern
´
andez-de Vega, F. (2014). Randomized parame-
ter settings for heterogeneous workers in a pool-based
evolutionary algorithm. In PPSN XIII, pages 702–710.
Springer.
Go
¨
effon, A., Lardeux, F., and Saubion, F. (2016). Simu-
lating non-stationary operators in search algorithms.
Appl. Soft Comput., 38:257–268.
Grefenstette, J. J. (1986). Optimization of control parame-
ters for genetic algorithms. Systems, Man and Cyber-
netics, IEEE Transactions on, 16(1):122–128.
Harada, T. and Takadama, K. (2017). Performance compar-
ison of parallel asynchronous multi-objective evolu-
tionary algorithm with different asynchrony. In CEC.
Jankee, C., Verel, S., Derbel, B., and Fonlupt, C. (2015).
Distributed Adaptive Metaheuristic Selection: Com-
parisons of Selection Strategies. In EA 2015, pages
83–96.
Jankee, C., Verel, S., Derbel, B., and Fonlupt, C. (2016). A
fitness cloud model for adaptive metaheuristic selec-
tion methods. In PPSN 2016, pages 80–90. Springer.
Kotthoff, L. (2012-10-30). Algorithm selection for com-
binatorial search problems: A survey. AI Magazine,
pages 48–60.
Kunanusont, K., Gaina, R. D., Liu, J., Perez-Liebana, D.,
and Lucas, S. M. (2017). The n-tuple bandit evolu-
tionary algorithm for automatic game improvement.
In CEC.
Maturana, J., Fialho,
´
A., Saubion, F., Schoenauer, M., and
Sebag, M. (2009). Extreme compass and dynamic
multi-armed bandits for adaptive operator selection.
In CEC, pages 365–372. IEEE.
Muniglia, M., Do, J.-M., Jean-Charles, L. P., Grard, H.,
Verel, S., and David, S. (2016). A Multi-Physics PWR
Model for the Load Following. In ICAPP.
Tanabe, R. and Fukunaga, A. (2013). Evaluation of a ran-
domized parameter setting strategy for island-model
evolutionary algorithms. In CEC 2013, pages 1263–
1270.
Thierens, D. (2005). An adaptive pursuit strategy for al-
locating operator probabilities. In GECCO’05, pages
1539–1546.
Tomassini, M. (2005). Spatially Structured Evolutionary
Algorithms: Artificial Evolution in Space and Time
(Natural Computing Series). Springer-Verlag New
York, Inc., Secaucus, NJ, USA.
Wessing, S., Rudolph, G., and Menges, D. A. (2016). Com-
paring asynchronous and synchronous parallelization
of the sms-emoa. In PPSN XIV, pages 558–567,
Cham. Springer.
Yagoubi, M. and Schoenauer, M. (2012). Asynchronous
master/slave moeas and heterogeneous evaluation
costs. In GECCO, pages 1007–1014.