Hart, W. E., Smith, J. E., and Natalio, K. (2005). Recent
Advances in Memetic Algorithms. Springer, Berlin,
Heidelberg.
Hinchliffe, M., Hiden, H., McKay, B., Willis, M., Tham,
M., and Barton, G. (1996). Modelling chemical pro-
cess systems using a multi-gene genetic programming
algorithm. In Koza, J. R., editor, Late Breaking Papers
at the Genetic Programming 1996 Conference Stan-
ford University July 28-31, 1996, pages 56–65, Stan-
ford University, CA, USA. Stanford Bookstore.
Hur
´
ak, Z. and Zem
´
anek, J. (2012). Feedback lineariza-
tion approach to distributed feedback manipulation. In
American control conference, pages 991–996, Mon-
treal, Canada.
Jackson, D. (2012a). A new, node-focused model for ge-
netic programming. In Moraglio, A., Silva, S., Kraw-
iec, K., Machado, P., and Cotta, C., editors, Genetic
Programming: 15th European Conference, EuroGP
2012, M
´
alaga, Spain, April 11-13, 2012. Proceedings,
pages 49–60. Springer, Berlin, Heidelberg.
Jackson, D. (2012b). Single node genetic programming
on problems with side effects. In Coello, C. A. C.,
Cutello, V., Deb, K., Forrest, S., Nicosia, G., and
Pavone, M., editors, Parallel Problem Solving from
Nature - PPSN XII: 12th International Conference,
Taormina, Italy, September 1-5, 2012, Proceedings,
Part I, pages 327–336. Springer, Berlin, Heidelberg.
Koza, J. R. (1992). Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selec-
tion (Complex Adaptive Systems). MIT Press Ltd.
Kubal
´
ık, J., Alibekov, E.,
ˇ
Zegklitz, J., and Babu
ˇ
ska, R.
(2016). Hybrid single node genetic programming for
symbolic regression. In Nguyen, N. T., Kowalczyk,
R., and Filipe, J., editors, Transactions on Compu-
tational Collective Intelligence XXIV, pages 61–82.
Springer, Berlin, Heidelberg.
McConaghy, T. (2011). FFX: Fast, scalable, determin-
istic symbolic regression technology. In Riolo, R.,
Vladislavleva, E., and Moore, J. H., editors, Genetic
Programming Theory and Practice IX, pages 235–
260. Springer New York, New York, NY.
Miller, J. F. and Thomson, P. (2000). Cartesian genetic pro-
gramming. In Poli, R., Banzhaf, W., Langdon, W. B.,
Miller, J., Nordin, P., and Fogarty, T. C., editors, Ge-
netic Programming: European Conference, EuroGP
2000, Edinburgh, Scotland, UK, April 15-16, 2000.
Proceedings, pages 121–132. Springer, Berlin, Hei-
delberg.
Ryan, C., Collins, J., and Neill, M. O. (1998). Gram-
matical evolution: Evolving programs for an arbi-
trary language. In Banzhaf, W., Poli, R., Schoenauer,
M., and Fogarty, T. C., editors, Genetic Program-
ming: First European Workshop, EuroGP’98 Paris,
France, April 14–15, 1998 Proceedings, pages 83–96.
Springer, Berlin, Heidelberg.
Schmidt, M. and Lipson, H. (2009). Distilling free-
form natural laws from experimental data. Science,
324(5923):81–85.
Searson, D. P., Leahy, D. E., and Willis, M. J. (2010). GP-
TIPS : An open source genetic programming toolbox
for multigene symbolic regression. In Proceedings
of the International Multiconference of Engineers and
Computer Scientists 2010 (IMECS 2010), volume 1,
pages 77–80, Hong Kong.
Staelens, N., Deschrijver, D., Vladislavleva, E., Vermeulen,
B., Dhaene, T., and Demeester, P. (2013). Construct-
ing a no-reference H.264/AVC bitstream-based video
quality metric using genetic programming-based sym-
bolic regression. IEEE Transactions on Circuits and
Systems for Video Technology, 23(8):1322–1333.
Vladislavleva, E., Friedrich, T., Neumann, F., and Wagner,
M. (2013). Predicting the energy output of wind farms
based on weather data: Important variables and their
correlation. Renewable Energy, 50:236–243.