geneous constellations of cameras, e.g. in terms of
varying capabilities.
ACKNOWLEDGEMENTS
This research is partially funded by the DFG within
the project CYPHOC (HA 5480/3-2).
REFERENCES
Bernauer, A., Zeppenfeld, J., Bringmann, O., Herkersdorf,
A., and Rosenstiel, W. (2011). Combining Soft-
ware and Hardware LCS for Lightweight On-chip
Learning. In Organic Computing, pages 253–265.
Birkh
¨
auser Verlag, Basel, CH.
Bull, L., Sha’Aban, J., Tomlinson, A., Addison, J., and Hey-
decker, B. (2004). Towards Distributed Adaptive Con-
trol for Road Traffic Junction Signals using Learning
Classifier Systems. In Bull, L., editor, Applications
of Learning Classifier Systems, volume 150 of Stud-
ies in Fuzziness and Soft Computing, pages 276–299.
Springer Berlin Heidelberg.
Butz, M., Goldberg, D., and Lanzi, P. (2005). Gradi-
ent descent methods in learning classifier systems:
improving XCS performance in multistep problems.
Evolutionary Computation, IEEE Transactions on,
9(5):452–473.
Butz, M. and Wilson, S. W. (2002). An Algorithmic De-
scription of XCS. Soft Comput., 6(3-4):144–153.
Erdem, U. M. and Sclaroff, S. (2006). Automated camera
layout to satisfy task-specific and floor plan-specific
coverage requirements. Computer Vision and Image
Understanding, 103(3):156–169.
Goldberg, D. E. (1987). Computer-aided pipeline opera-
tion using genetic algorithms and rule learning. part
ii: Rule learning control of a pipeline under normal
and abnormal conditions. Engineering with Comput-
ers, 3(1):47–58.
Hoffmann, M., H
¨
ahner, J., and M
¨
uller-Schloer, C. (2008).
Towards Self-organising Smart Camera Systems,
pages 220–231. Springer Berlin Heidelberg, Berlin,
Heidelberg.
Holland, J. H. (1976). Adaptation. In Rosen, R. and Snell,
F., editors, Progress in Theoretical Biology, volume 4,
pages 263–293. Academic Press, New York.
Holland, J. H., Booker, L. B., Colombetti, M., Dorigo, M.,
Goldberg, D. E., Forrest, S., Riolo, R. L., Smith, R. E.,
Lanzi, P. L., Stolzmann, W., and Wilson, S. W. (2000).
What Is a Learning Classifier System?, pages 3–32.
Springer Berlin Heidelberg, Berlin, Heidelberg.
Khan, M. I. and Rinner, B. (2012a). Resource coordination
in wireless sensor networks by cooperative reinforce-
ment learning. In PerCom Workshops, pages 895–900.
IEEE.
Khan, U. A. and Rinner, B. (2012b). A reinforcement learn-
ing framework for dynamic power management of a
portable, multi-camera traffic monitoring system. In
GreenCom, pages 557–564.
Kovacs, T. (1998). XCS Classifier System Reliably Evolves
Accurate, Complete, and Minimal Representations for
Boolean Functions. In Chawdhry, P., Roy, R., and
Pant, R., editors, Soft Computing in Engineering De-
sign and Manufacturing, pages 59–68. Springer Lon-
don.
Lanzi, P. L., Loiacono, D., Wilson, S. W., and Goldberg,
D. E. (2007). Generalization in the XCSF Classifier
System: Analysis, Improvement, and Extension. Evol.
Comput., 15(2):133–168.
Lewis, P. R., Esterle, L., Chandra, A., Rinner, B., and Yao,
X. (2013). Learning to be different: Heterogeneity
and efficiency in distributed smart camera networks.
In Proceedings of the 7th IEEE Conference on Self-
Adaptive and Self-Organizing Systems (SASO), pages
209–218. IEEE Press.
Liu, J., Sridharan, S., and Fookes, C. (2016). Recent
advances in camera planning for large area surveil-
lance: A comprehensive review. ACM Comput. Surv.,
49(1):6:1–6:37.
Murray, A. T., Kim, K., Davis, J. W., Machiraju, R., and
Parent, R. E. (2007). Coverage optimization to sup-
port security monitoring. Computers, Environment
and Urban Systems, 31(2):133–147.
Piciarelli, C., Esterle, L., Khan, A., Rinner, B., and Foresti,
G. L. (2016). Dynamic reconfiguration in camera net-
works: A short survey. IEEE Transactions on Circuits
and Systems for Video Technology, 26(5):965–977.
Piciarelli, C., Micheloni, C., and Foresti, G. L. (2011). Au-
tomatic reconfiguration of video sensor networks for
optimal 3d coverage. In 2011 Fifth ACM/IEEE Inter-
national Conference on Distributed Smart Cameras,
pages 1–6.
Prothmann, H., Rochner, F., Tomforde, S., Branke, J.,
M
¨
uller-Schloer, C., and Schmeck, H. (2008). Organic
Control of Traffic Lights, pages 219–233. Springer
Berlin Heidelberg, Berlin, Heidelberg.
Rinner, B., Winkler, T., Schriebl, W., Quaritsch, M., and
Wolf, W. (2008). The evolution from single to per-
vasive smart cameras. In Distributed Smart Cameras,
2008. ICDSC 2008. Second ACM/IEEE International
Conference on, pages 1–10.
Rudolph, S., Edenhofer, S., Tomforde, S., and H
¨
ahner,
J. (2014). Reinforcement learning for coverage op-
timization through PTZ camera alignment in highly
dynamic environments. In Proceedings of the In-
ternational Conference on Distributed Smart Cam-
eras, ICDSC ’14, Venezia Mestre, Italy, November 4-
7, 2014, pages 19:1–19:6.
Sommer, M., Stein, A., and H
¨
ahner, J. (2016a). Ensemble
Time Series Forecasting with XCSF. In 2016 IEEE
10th International Conference on Self-Adaptive and
Self-Organizing Systems (SASO), pages 150–151.
Sommer, M., Stein, A., and H
¨
ahner, J. (2016b). Local en-
semble weighting in the context of time series fore-
casting using XCSF. In 2016 IEEE Symposium Series
on Computational Intelligence (SSCI), pages 1–8.