ing scheme we used our recently introduced RGNG-
based grid cell model (Kerdels and Peters, 2015;
Kerdels, 2016; Kerdels and Peters, 2016) to simulate
several groups of grid cells that processed visual in-
puts derived from the MNIST database of handwritten
digits. The results indicate that entorhinal grid cells
may indeed perform pattern separation on their input
signals and thus may provide already orthogonalized
output signals to the hippocampus.
These results challenge established views on the
parahippocampal-hippocampal region and provide a
novel explanation for the origin of the pattern sepa-
ration that is observed in the dentate gyrus. Further-
more, they uncover a common misconception about
the assumed lack of specificity in the activity of grid
cell groups. Finally, the results encourage the further
investigation of the influence of multimodal input on
the processing within the entorhinal cortex.
REFERENCES
Aronov, D., Nevers, R., and Tank, D. W. (2017). Map-
ping of a non-spatial dimension by the hippocampa-
lentorhinal circuit. Nature, 543(7647):719–722.
Berron, D., Sch
¨
utze, H., Maass, A., Cardenas-Blanco, A.,
Kuijf, H. J., Kumaran, D., and D
¨
uzel, E. (2016).
Strong evidence for pattern separation in human den-
tate gyrus. Journal of Neuroscience, 36(29):7569–
7579.
Burgess, N., Maguire, E. A., and O’Keefe, J. (2002). The
human hippocampus and spatial and episodic mem-
ory. Neuron, 35(4):625 – 641.
Butler, A. and Hodos, W. (2005). Comparative Vertebrate
Neuroanatomy: Evolution and Adaptation. Wiley.
Constantinescu, A. O., O’Reilly, J. X., and Behrens, T.
E. J. (2016). Organizing conceptual knowledge in hu-
mans with a grid-like code. Science (New York, N.Y.),
352(6292):1464–1468.
de Almeida, L., Idiart, M., and Lisman, J. E. (2009). The
inputoutput transformation of the hippocampal gran-
ule cells: From grid cells to place fields. The Journal
of Neuroscience, 29(23):7504–7512.
Diehl, G. W., Hon, O. J., Leutgeb, S., and Leutgeb, J. K.
(2017). Grid and nongrid cells in medial entorhinal
cortex represent spatial location and environmental
features with complementary coding schemes. Neu-
ron, 94(1):83 – 92.e6.
Franzius, M., Vollgraf, R., and Wiskott, L. (2007). From
grids to places. Journal of Computational Neuro-
science, 22(3):297–299.
Fritzke, B. (1995). A growing neural gas network learns
topologies. In Advances in Neural Information Pro-
cessing Systems 7, pages 625–632. MIT Press.
Fyhn, M., Molden, S., Witter, M. P., Moser, E. I., and
Moser, M.-B. (2004). Spatial representation in the en-
torhinal cortex. Science, 305(5688):1258–1264.
Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., and
Moser, E. I. (2005). Microstructure of a spatial map
in the entorhinal cortex. Nature, 436(7052):801–806.
Kerdels, J. (2016). A Computational Model of Grid Cells
based on a Recursive Growing Neural Gas. PhD the-
sis, FernUniversit
¨
at in Hagen, Hagen.
Kerdels, J. and Peters, G. (2015). A new view on grid cells
beyond the cognitive map hypothesis. In 8th Confer-
ence on Artificial General Intelligence (AGI 2015).
Kerdels, J. and Peters, G. (2016). Modelling the grid-like
encoding of visual space in primates. In Proceedings
of the 8th International Joint Conference on Compu-
tational Intelligence, IJCCI 2016, Volume 3: NCTA,
Porto, Portugal, November 9-11, 2016., pages 42–49.
Killian, N. J., Jutras, M. J., and Buffalo, E. A. (2012). A
map of visual space in the primate entorhinal cortex.
Nature, 491(7426):761–764.
Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.
Leutgeb, J. K., Leutgeb, S., Moser, M.-B., and Moser, E. I.
(2007). Pattern separation in the dentate gyrus and ca3
of the hippocampus. Science, 315(5814):961–966.
Martinetz, T. M. and Schulten, K. (1994). Topology repre-
senting networks. Neural Networks, 7:507–522.
Rolls, E. (2013). The mechanisms for pattern completion
and pattern separation in the hippocampus. Frontiers
in Systems Neuroscience, 7(74).
Rolls, E. T., Stringer, S. M., and Elliot, T. (2006). Entorhi-
nal cortex grid cells can map to hippocampal place
cells by competitive learning. Network: Computation
in Neural Systems, 17(4):447–465. PMID: 17162463.
Rowland, D. C., Roudi, Y., Moser, M.-B., and Moser, E. I.
(2016). Ten years of grid cells. Annual Review of
Neuroscience, 39(1):19–40. PMID: 27023731.
Savelli, F. and Knierim, J. J. (2010). Hebbian analysis of the
transformation of medial entorhinal grid-cell inputs to
hippocampal place fields. Journal of Neurophysiol-
ogy, 103(6):3167–3183.
Solstad, T., Moser, E. I., and Einevoll, G. T. (2006). From
grid cells to place cells: A mathematical model. Hip-
pocampus, 16(12):1026–1031.
Somogyi, P. (2010). Hippocampus: Intrinsic organization.
In Shepherd, G. M. and Grillner, S., editors, Hand-
book of Brain Microcircuits, pages 148–164. Oxford
University Press.
Squire, L., Bloom, F., Spitzer, N., Squire, L., Berg, D.,
du Lac, S., and Ghosh, A. (2008). Fundamental Neu-
roscience. Fundamental Neuroscience Series. Elsevier
Science.
Tulving, E. and Markowitsch, H. J. (1998). Episodic and
declarative memory: Role of the hippocampus. Hip-
pocampus, 8(3):198–204.
van Strien, N. M., Cappaert, N. L. M., and Witter, M. P.
(2009). The anatomy of memory: an interactive
overview of the parahippocampal-hippocampal net-
work. Nat Rev Neurosci, 10(4):272–282.
Witter, M. P., Wouterlood, F. G., Naber, P. A., and van
Haeften, T. (2000). Anatomical organization of the