ergy management system design for residential grid-
connected microgrids. IEEE Transactions on Smart
Grid, PP(99):1–1.
Bradley, P. S., Mangasarian, O. L., and Street, W. N. (1997).
Clustering via concave minimization. In Advances
in neural information processing systems, pages 368–
374.
Davies, D. L. and Bouldin, D. W. (1979). A cluster separa-
tion measure. IEEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI-1(2):224–227.
De Santis, E., Rizzi, A., and Sadeghian, A. (2017). Hier-
archical genetic optimization of a fuzzy logic system
for energy flows management in microgrids. Applied
Soft Computing, 60:135 – 149.
Deng, R., Yang, Z., Chow, M. Y., and Chen, J. (2015). A
survey on demand response in smart grids: Mathemat-
ical models and approaches. IEEE Transactions on
Industrial Informatics, 11(3):570–582.
Dragicevic, T., Vasquez, J. C., Guerrero, J. M., and Skrlec,
D. (2014). Advanced lvdc electrical power architec-
tures and microgrids: A step toward a new generation
of power distribution networks. IEEE Electrification
Magazine, 2(1):54–65.
Jang, J.-S. (1993). Anfis: adaptive-network-based fuzzy in-
ference system. IEEE transactions on systems, man,
and cybernetics, 23(3):665–685.
Kaufman, L. and Rousseeuw, P. (1987). Clustering by
means of medoids. Statistical data analysis based on
the L1-norm and related methods.
Kirschen, D. S. (2003). Demand-side view of electric-
ity markets. IEEE Transactions on Power Systems,
18(2):520–527.
Leonori, S., De Santis, E., Rizzi, A., and Frattale Mascioli,
F. M. (2016a). Multi objective optimization of a fuzzy
logic controller for energy management in microgrids.
In 2016 IEEE Congress on Evolutionary Computation
(CEC), pages 319–326.
Leonori, S., De Santis, E., Rizzi, A., and Frattale Masci-
oli, F. M. (2016b). Optimization of a microgrid en-
ergy management system based on a fuzzy logic con-
troller. In IECON 2016 - 42nd Annual Conference of
the IEEE Industrial Electronics Society, pages 6615–
6620.
Leonori, S., Paschero, M., Rizzi, A., and Frattale Masci-
oli, F. M. (2017). An optimized microgrid energy
management system based on fis-mo-ga paradigm. In
2017 IEEE International Conference on Fuzzy Sys-
tems (FUZZ-IEEE), pages 1–6.
Lloyd, S. (1982). Least squares quantization in pcm. IEEE
transactions on information theory, 28(2):129–137.
MacQueen, J. (1967). Some methods for classification and
analysis of multivariate observations. In Proceed-
ings of the fifth Berkeley symposium on mathematical
statistics and probability, volume 1, pages 281–297.
Oakland, CA, USA.
Mahalanobis, P. C. (1936). On the generalised distance in
statistics. Proceedings of the National Institute of Sci-
ences of India, 1936, pages 49–55.
Palma-Behnke, R., Benavides, C., Lanas, F., Severino, B.,
Reyes, L., Llanos, J., and Sez, D. (2013). A micro-
grid energy management system based on the rolling
horizon strategy. IEEE Transactions on Smart Grid,
4(2):996–1006.
Panella, M., Rizzi, A., Frattale Mascioli, F. M., and Mar-
tinelli, G. (2001). Anfis synthesis by hyperplane clus-
tering. In Proceedings Joint 9th IFSA World Congress
and 20th NAFIPS International Conference (Cat. No.
01TH8569), volume 1, pages 340–345 vol.1.
Park, H.-S. and Jun, C.-H. (2009). A simple and fast algo-
rithm for k-medoids clustering. Expert systems with
applications, 36(2):3336–3341.
Patterson, B. T. (2012). Dc, come home: Dc microgrids and
the birth of the ”enernet”. IEEE Power and Energy
Magazine, 10(6):60–69.
Rizzi, A., Frattale Mascioli, F. M., and Martinelli, G.
(1999). Automatic training of anfis networks. In Fuzzy
Systems Conference Proceedings, 1999. FUZZ-IEEE
’99. 1999 IEEE International, volume 3, pages 1655–
1660 vol.3.
Sundstrom, O. and Guzzella, L. (2009). A generic dynamic
programming matlab function. In 2009 IEEE Control
Applications, (CCA) Intelligent Control, (ISIC), pages
1625–1630.