ACKNOWLEDGEMENTS
Grants supporting the authors’ research
#2012/50533-2, #2013/05083-1, #2006/06491-2,
#2011/06179-7 and 2012/20110-2 from São Paulo
Research Foundation (FAPESP). We also thank
Agência UNESP de Inovação (AUIN) for processing
the national and international patents of the
invention.
REFERENCES
Ahlstrm, A. et al. (2011) ‘Trophectoderm morphology: An
important parameter for predicting live birth after
single blastocyst transfer’, Human Reproduction,
26(12), pp. 3289–3296. doi: 10.1093/humrep/der325.
Arce, J. et al. (2006) ‘Interobserver agreement and
intraobserver reproducibility of embryo quality
assessments’, 21(8), pp. 2141–2148. doi: 10.1093/
humrep/del106.
Atherton, T. J. and Kerbyson, D. J. (1999) ‘Size invariant
circle detection’, Image Vision Computing, 17, pp.
795–803.
Beale, M. H., Hagan, M. T. and Demuth, H. B. (2017)
Neural Network ToolboxTM User’s Guide.
Beucher, S. (1992) ‘The watershed transformation applied
to image segmentation’, Scanning Microscopy
Supplement, 6, pp. 299–314.
Gardner D. K., Schoolcraft W. B. (1999) In vitro culture
of human blastocyst. In: Janson R, Mortimer D, eds.
Towards Reproductive Certainty: Infertility and
Genetics Beyond. Carnforth: Parthenon Press. p.378-
88.
Gonzalez, R. C. and Woods, R. E. (2007) Digital Image
Processing. 3rd edn. Pearson Prentice Hall.
Haralick, R. M., Shanmugam, K. and Dinstein, I. (1973)
‘Textural Features for Image Classification’, IEEE
Transactions on Systems, Man and Cybernetics, 3, pp.
610–621.
Haykin, S. (2001) Redes Neurais: princípios e prática.
2nd edn. Porto Alegre: Bookman.
Jayas, D. S., Paliwal, J. and Visen, N. S. (2000) ‘Review
Paper (AE—Automation and Emerging
Technologies)’, Journal of Agricultural Engineering
Research, 77(2), pp. 119–128. doi: 10.1006/
jaer.2000.0559.
Kakourou, G. et al. (2013) ‘Investigation of gene
expression pro fi les before and after embryonic
genome activation and assessment of functional
pathways at the human metaphase II oocyte’, Fertil
Steril. doi: 10.1016/j.fertnstert.2012.10.036.
Kovacs, P. (2014) ‘Embryo selection: the role of time-
lapse monitoring’, Reproductive Biology and
Endocrinology, 12, p. 124.
Kovács, Z. L. (2002) Redes Neurais Artificiais. Editora
Livraria da Fisica.
Lacerda, E. G. M. De and Carvalho, A. C. P. L. F. de
(1999) Introdução aos Algoritmos Genéticos.
Marmol, U. (2011) ‘Use of Gabor filters for texture
classification of airborne images and LIDAR data’,
Archiwum Fotogrametrii, Kartografii i Teledetekcji,
22, pp. 325–336. Available at: http://ptfit.sgp.
geodezja.org.pl/wydawnictwa/krakow2011/APCRS
vol. 22 pp. 325-336.pdf5-336.pdf.
Matos, F. D., Rocha, J. C. and Nogueira, M. F. G. (2014)
‘A method using artificial neural networks to
morphologically assess mouse blastocyst quality’,
Journal of Animal Science and Technology, 56.
MATLAB R2017a. Natick, MA: MathWorks, 2017.
Computer software.
della Ragione, T. et al. (2007) ‘Developmental stage on
day-5 and fragmentation rate on day-3 can influence
the implantation potential of top-quality blastocysts in
IVF cycles with single embryo transfer.’,
Reproductive biology and endocrinology : RB&E, 5, p.
2. doi: 10.1186/1477-7827-5-2.
Richardson, A. et al. (2015) ‘A clinically useful simplified
blastocyst grading system’, Reproductive BioMedicine
Online, 31, pp. 523–530.
Rocha, J. C. et al. (2016) ‘Methods for assessing the
quality of mammalian embryos: How far we are from
the gold standard?’, JBRA Assisted Reproduction,
20(3), pp. 150–158.
Rocha, J. C. et al. (2017) ‘A method based on artificial
intelligence to fully automatize the evaluation of
bovine blastocyst images’, Scientific Reports,
7(Article number: 7659).
Schaffer, J. D., Whitley, D. and Eshelman, L. J. (1992)
‘Combinations of genetic algorithms and neural
networks: a survey of the state of the art’,
[Proceedings] COGANN-92: International Workshop
on Combinations of Genetic Algorithms and Neural
Networks, pp. 1–37. doi: 10.1109/
COGANN.1992.273950.
Van Den Abbeel. et al. (2013) ‘Association between
blastocyst morphology and outcome of single-
blastocyst transfer’, Reproductive biomedicine online,
v. 27, n. 4, p. 353-361.
Van Soom, A. et al. (2003) ‘Assessment of mammalian
embryo quality: what can we learn from embryo
morphology?’, Reproductive biomedicine online.
Reproductive Healthcare Ltd, Duck End Farm, Dry
Drayton, Cambridge CB23 8DB, UK, 7(6), pp. 664–
70. doi: 10.1016/S1472-6483(10)62089-5.
Sundvall, L. et al. (2013) ‘Inter- and intra-observer
variability of time-lapse annotations’, 28(12), pp.
3215–3221. doi: 10.1093/humrep/det366.
Tejera, A. et al. (2016) ‘Combination of metabolism
measurement and a time-lapse system provides an
embryo selection method based on oxygen uptake and
chronology of cytokinesis timing’, Fertility and
sterility, 106, pp. 119–126. doi: 10.1016/
j.fertnstert.2016.03.019.
Tejera, L., Aparicio-Ruiz, B. and Meseguer, M. (2017)
‘The use of morphokinetic as a predictor of
implantation’, MINERVA GINECOLOGICA. doi:
10.23736/S0026-4784.17.04098-9.