shape of the boundary is a sufficiently regular
surface. Again, this seems to be fully adequate since,
in the majority of the scientific applications, the
boundaries between the various classes are quite
regular functions. This has been confirmed by the
application of the technique to experimental
databases of different scientific disciplines.
On the other hand, the method is susceptible of
various improvements. First of all, the technique
should be extended to other machine learning tools,
such a neural networks. More fundamentally, the
approach is now limited to identifying the
mathematical expressions of boundaries which can
be expressed as functions. It is a topic of future
investigations to apply the method to the
investigation of more complex boundaries (for
example multiply connected hypersurfaces).
Moreover, the task of regression, and not only
classification, should also be tackled (Murari (D),
2015; Murari (C), 2015; Peluso, 2014; Murari,
2016). Also applications to various aspects of
tomography inversion and disruptions are envisaged
(Martin, 1997; Murari (B), 2013).
REFERENCES
Andreucci F and Arbolino M., 1993, Il Nuovo Cimento,
16, 1, 35 (1993).
Bellecci C et al, 2007, Appl. Phys. B, 87, 373.
Bellecci C et al., 2010, Optical Engineering, 49 (12),
124302.
Cannas B. et al, 2013, Nucl. Fusion 53 093023
Fiocco G. and Smullin L. D., 1963, Nature, 199, 1275 .
Gaudio et al., 2014, Plasma Phys. Control. Fusion, 56
114002.
Gelfusa M. et al, 2014, Review Scientific Instr., 85,
063112
Gelfusa M. et al, 2015 “First attempts at measuring
widespread smoke with a mobile lidar system”, IEEE
Xplore, ISBN: 978-1-78561-068-4
Hirotugo A., 1974, IEEE Transactions on Automatic
Control 19 (6): 716–723, 1974
Johnson B.et al, 2013, International Journal of Remote
Sensing, 34 (20), 6969-6982.
Kenneth P. B and Anderson D. R., 2002, “Model Selection
and Multi-Model Inference: A Practical Information-
Theoretic Approach”, Springer (2nd ed)
Koza J.R., 1992, “Genetic Programming: On the
Programming of Computers by Means of Natural
Selection”, MIT Press, Cambridge, MA, USA.
Lotov A. V. et al, 2009 “Interactive Decision Maps:
Approximation and Visualization of Pareto Frontier”,
Springer, ISBN 978-1-4020-7631-2.
Marrelli L. et al, 1998, “Total radiation losses and
emissivity profiles in RFX”, Nucl. Fusion 38 (5), 649
Martin P. et al, 1997, Review of scientific instruments 68
(2), 1256-1260
Murari A., et al, 2009, Nucl. Fusion, 49 055028 (11pp)
Murari A., et al. (A), 2013, Nucl. Fusion 53 033006 (9pp)
Murari A., et al, (B), 2013 Nucl. Fusion, 53 043001
doi:10.1088/0029-5515/53/4/043001
Murari A. et al (C), 2015, Plasma Physics. Control.
Fusion, 57 014008, doi: http://dx.doi.org/10.1088/
0741-3335/57/1/014008
Murari A et al (D), 2015, Nucl. Fusion 55 073009 (14pp)
doi:10.1088/0029-5515/55/7/073009
Murari A. et al., 2016, Nucl. Fusion 56 026005,
doi:http://dx.doi.org/10.1088/0029-5515/56/2/026005
Peluso E. et al, 2014, Plasma Phys. Control. Fusion, 56
114001,doi:http://dx.doi.org/10.1088/0741-
3335/56/11/114001
Rattà G. A. et al., 2010, Nucl. Fusion. 50 025005 (10pp).
Schmidt M. and Lipson H., 2009 April, Science, Vol 324
Vapnik V., 2013 “The Nature of Statistical Learning
Theory”, Springer Science & Business Media, ISBN
1475724403, 9781475724400
Vega et al, 2010, Review of Scientific Instruments, 81 (2),
p. 023505
Vega J et al, 2014, Nucl. Fusion 54 123001
Vega J. et al, 2009, Nucl. Fusion. 49 085023 (11pp)
Wesson J., “Tokamaks”, Clarendon Press, Oxford, 2004.
Third edition.