REFERENCES
Alviano, M. and Pealoza, R. (2013). Fuzzy answer sets
approximations. Theory and Practice of Logic Pro-
gramming, 13(4-5):753767.
Baaz, M., H
´
ajek, P.,
ˇ
Svejda, D., and Kraj
´
ı
ˇ
cek, J. (1998).
Embedding logics into product logic. Studia Logica,
61(1):35–47.
Blondeel, M., Schockaert, S., De Cock, M., and Vermeir,
D. (2012). NP-completeness of fuzzy answer set pro-
gramming under Lukasiewicz semantics, pages 43–50.
Bobillo, F. and Straccia, U. (2007). A fuzzy description
logic with product t-norm. In 2007 IEEE International
Fuzzy Systems Conference, pages 1–6.
Brys, T., Drugan, M. M., Bosman, P. A., De Cock, M., and
Now
´
e, A. (2013). Solving satisfiability in fuzzy log-
ics by mixing cma-es. In Proceedings of the 15th An-
nual Conference on Genetic and Evolutionary Com-
putation, GECCO ’13, pages 1125–1132, New York,
NY, USA. ACM.
Clark, K. L. (1978). Negation as Failure, pages 293–322.
Springer US, Boston, MA.
Davis, M., Logemann, G., and Loveland, D. (1962). A ma-
chine program for theorem-proving. Commun. ACM,
5(7):394–397.
Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T.
(2012). Answer Set Solving in Practice. Synthe-
sis Lectures on Artificial Intelligence and Machine
Learning. Morgan and Claypool Publishers.
Gelfond, M. and Lifschitz, V. (1988). The stable model
semantics for logic programming. pages 1070–1080.
MIT Press.
Guller, D. (2013). A dpll procedure for the propositional
product logic. In Proceedings of the 5th International
Joint Conference on Computational Intelligence - Vol-
ume 1: FCTA, (IJCCI 2013), pages 213–224. IN-
STICC, SciTePress.
Guller, D. (2017). Expanding G
¨
odel Logic with Truth Con-
stants and the Equality, Strict Order, Delta Opera-
tors, pages 241–269. Springer International Publish-
ing, Cham.
H
¨
ahnle, R. (1994). Many-valued logic and mixed integer
programming. Annals of Mathematics and Artificial
Intelligence, 12(3):231–263.
H
´
ajek, P. (2001). Metamathematics of Fuzzy Logic. Trends
in Logic. Springer.
Hansen, N. (2006). The CMA Evolution Strategy: A Com-
paring Review, pages 75–102. Springer Berlin Hei-
delberg, Berlin, Heidelberg.
Janssen, J., Schockaert, S., Vermeir, D., and Cock, M. D.
(2011). Reducing fuzzy answer set programming to
model finding in fuzzy logics. CoRR, abs/1104.5133.
Janssen, J., Schockaert, S., Vermeir, D., and De Cock, M.
(2012). Answer Set Programming for Continuous Do-
mains: A Fuzzy Logic Approach. Atlantis Computa-
tional Intelligence Systems. Atlantis Press.
Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G.,
Perri, S., and Scarcello, F. (2006). The dlv system for
knowledge representation and reasoning. ACM Trans.
Comput. Logic, 7(3):499–562.
Lifschitz, V. (1999). Action languages, answer sets and
planning. In The Logic Programming Paradigm: a
25-Year Perspective, pages 357–373. Springer Verlag.
Lin, F. and Zhao, Y. (2004). Assat: computing answer sets
of a logic program by sat solvers. Artificial Intelli-
gence, 157(1):115 – 137.
Mushthofa, M., Schockaert, S., and Cock, M. D. (2014).
A finite-valued solver for disjunctive fuzzy answer set
programs. In Proceedings of the Twenty-first Euro-
pean Conference on Artificial Intelligence, ECAI’14,
pages 645–650, Amsterdam, The Netherlands, The
Netherlands. IOS Press.
Mushthofa, M., Schockaert, S., and De Cock, M. (2015a).
Solving disjunctive fuzzy answer set programs. In In-
ternational Conference on Logic Programming and
Nonmonotonic Reasoning, pages 453–466. Springer
International Publishing.
Mushthofa, M., Schockaert, S., and De Cock, M. (2015b).
Solving Disjunctive Fuzzy Answer Set Programs,
pages 453–466. Springer International Publishing,
Cham.
Mushthofa, M., Schockaert, S., and De Cock, M. (2016).
Computing attractors of multi-valued gene regulatory
networks using fuzzy answer set programming. In
Proceedings of the 2016 IEEE International Con-
ference on Fuzzy Systems FUZZ-IEEE’2016, pages
1955–1962. IEEE.
Simons, P., Niemel, I., and Soininen, T. (2002). Extending
and implementing the stable model semantics. Artifi-
cial Intelligence, 138(1):181 – 234. Knowledge Rep-
resentation and Logic Programming.
Van Nieuwenborgh, D., De Cock, M., and Vermeir, D.
(2007a). Computing Fuzzy Answer Sets Using dlvhex,
pages 449–450. Springer Berlin Heidelberg, Berlin,
Heidelberg.
Van Nieuwenborgh, D., De Cock, M., and Vermeir, D.
(2007b). An introduction to fuzzy answer set pro-
gramming. Annals of Mathematics and Artificial In-
telligence, 50(3):363–388.