Hamid, O. H. (2014). The role of temporal statistics in
the transfer of experience in context-dependent rein-
forcement learning. In 14th International Conference
on Hybrid Intelligent Systems (HIS), pages 123–128.
IEEE.
Hamid, O. H. (2015). A model-based Markovian context-
dependent reinforcement learning approach for neu-
robiologically plausible transfer of experience. In-
ternational Journal of Hybrid Intelligent Systems,
12(2):119–129.
Hamid, O. H. and Braun, J. (2010). Relative importance of
sensory and motor events in reinforcement learning.
Perception ECVP abstract, 39:48–48.
Hamid, O. H., Wendemuth, A., and Braun, J. (2010).
Temporal context and conditional associative learn-
ing. BMC Neuroscience, 11(45):1–16.
Hopfield, J. J. (1982). Neural networks and physical sys-
tems with emergent collective computational abili-
ties. Proceedings of the national academy of sciences,
79(8):2554–2558.
Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996).
Reinforcement learning: A survey. Journal of Artifi-
cial Intelligence Research, 4:237–285.
Kamin, L. J. (1969). Predictability, surprise, attention,
and conditioning. In Campbell, B. A. and Church,
R. M., editors, Punishment and Aversive Behavior,
pages 242–259. Appleton-Century-Crofts, New York.
Kremer, E. F. (1978). The Rescorla-Wagner model: losses
in associative strength in compound conditioned stim-
uli. J. Exp. Psychol. Animal Behav. Proc., 4:22–36.
Krigolson, O. E., Hassall, C. D., and Handy, T. C. (2014).
How we learn to make decisions: Rapid propagation
of reinforcement learning prediction errors in humans.
J. Cognitive Neuroscience, 26(3):635–644.
Lewis, F. L. and Vrabie, D. (2009). Reinforcement learning
and adaptive dynamic programming for feedback con-
trol. IEEE Circuits and Systems Magazine, 9(3):32–
50.
Maia, T. V. (2009). Reinforcement learning, conditioning,
and the brain: Successes and challenges. Cogn. Affect.
Behav. Neurosci., 9:343–64.
Mante, V., Sussillo, D., Shenoy, K. V., and Newsome, W. T.
(2013). Context-dependent computation by recurrent
dynamics in prefrontal cortex. Nature, 503(7474):78–
84.
Marsland, S. (2015). Machine learning: an algorithmic
perspective. Chapman & Hall / CRC press.
Mermillod, M., Bugaiska, A., and Bonin, P. (2013). The
stability-plasticity dilemma: Investigating the contin-
uum from catastrophic forgetting to age-limited learn-
ing effects. Frontiers in psychology, 4.
Miyashita, Y. (1988). Neuronal correlate of visual associa-
tive long-term memory in the primate temporal cortex.
Nature, 335:817–820.
Nevo, I. and Erev, I. (2012). On surprise, change, and the
effect of recent outcomes. Frontiers in psychology, 3.
Niv, Y. and Montague, P. R. (2008). Theoretical and empir-
ical studies of learning. In Glimcher, P. W., Camerer,
C., Fehr, E., and Poldrack, R., editors, Neuroeco-
nomics: Decision Making and The Brain, pages 329–
349. NY: Academic Press, New York.
Owen, A. M. (1997). Cognitive planning in humans: neu-
ropsychological, neuroanatomical and neuropharma-
cological perspectives. Prog. Neurobiol., 53(4):431–
450.
Packard, M. G. and Knowlton, B. (2002). Learning and
memory functions of the basal ganglia. Ann. Rev. Neu-
rosci., 25:563–593.
Phelps, E. A., Lempert, K. M., and Sokol-Hessner, P.
(2014). Emotion and decision making: multiple mod-
ulatory neural circuits. Annual Review of Neuro-
science, 37:263–287.
Poldrack, R. A. and Packard, M. G. (2003). Competi-
tion among multiple memory systems: converging ev-
idence from animal and human brain studies. Neu-
ropsychologia, 41(3):245–251.
Rescorla, R. A. and Lolordo, V. M. (1968). Inhibition
of avoidance behavior. J. Comp. Physiol. Psychol.,
59:406–412.
Reynolds, G. S. (1961). Attention in the pigeon. J. Exp.
Anal. Behav., 4:203–208.
Rigotti, M., Rubin, D. B. D., Morrison, S. E., Salzman,
C. D., and Fusi, S. (2010). Attractor concretion as
a mechanism for the formation of context representa-
tions. Neuroimage, 52(3):833–847.
Schultz, W., Dayan, P., and Montague, P. R. (1997). A
neural substrate of prediction and reward. Science,
275(5306):1593–1599.
Shteingart, H., Neiman, T., and Loewenstein, Y. (2013).
The role of first impression in operant learn-
ing. Journal of Experimental Psychology: General,
142(2):476.
Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learn-
ing: An Introduction. The MIT Press, Cambridge,
Massachusetts.
van der Ree, M. and Wiering, M. (2013). Reinforcement
learning in the game of othello: Learning against
a fixed opponent and learning from self-play. In
Adaptive Dynamic Programming And Reinforcement
Learning (ADPRL), 2013 IEEE Symposium on, pages
108–115. IEEE.
van Otterlo, M. and Wiering, M. (2012). Reinforcement
learning and markov decision processes. In Wiering,
M. and van Otterlo, M., editors, Reinforcement Learn-
ing: State of the Art, pages 3–42. Springer, Berlin,
Heidelberg.
Yakovlev, V., Fusi, S., Berman, E., and Zohary, E. (1998).
Inter-trial neuronal activity in inferior temporal cor-
tex: a putative vehicle to generate long-term visual
associations. Nat. Neurosci., 1:310–317.