
A on Spam Filtering Classification: A Majority Voting like Approach

Youngsu Dong, Mourad Oussalah and Lauri Lovén
Center for Ubiquitous Computing, University of Oulu, PO Box 4500, 90010 Finland

Keywords: Machine Learning, Text Mining, Majority Voting.

Abstract: Despite the improvement in filtering tools and informatics security, spam still cause substantial damage to

public and private organizations. In this paper, we present a majority-voting based approach in order to

identify spam messages. A new methodology for building majority voting classifier is presented and tested.

The results using SpamAssassin dataset indicates non-negligible improvement over state of art, which paves

the way for further development and applications.

1 INTRODUCTION

Global email traffic is constantly growing (The

Radicati Group, 2017), and along with it, the number

of unsolicited email (“spam“) is on the rise (Shams

and Mercer, 2013). Spam is sent for various reasons:

for promotion campaigns, advertisement, spreading

backdoors or malicious programs, to name but a few.

Excessive amounts of spam are not only harming

individuals by creating frustrating situations for the

user, but also generate major problems for the

sustainability of the SMEs and IT services.

To cope with the increasing spam traffic, filtering

techniques to discriminate genuine from spam emails

require constant improvement. However, also spam

itself evolves, adjusting to the changes in the filters.

This evolution together with the high variability in the

textual contents of spam messages makes the

development of new algorithms and methodologies

challenging, with standard pre-processing and natural

language processing techniques often showing their

inherent limitations.

This motivates extensive work in development of

anti-spam techniques. The latter can be classified

(Chuan, et al., 2005) into i) a content-based approach,

where the email body is tested for selected key-words,

or patterns that are typical for spams; ii) a header-

based approach, which requires collecting email

addresses of known spammers and known non-

spammers; iii) a protocol-based approach,

introducing new procedures for sender authentication

such as visiting specific websites, collecting personal

codes, adding new entries to DNS servers, or the the

greylisting approach (Harris, 2017), where the

receiving mail server requires an unknown sender to

resend the email again later; or iv) a social network

based approach, with a graph based metric such as the

clustering coefficient is used to test the likelihood of

spam (speculating that spammers send thousands or

even millions of messages).

This paper focuses on the first class, namely, the

content-based approach. We propose a new method

using an ensemble of classifiers.

A classifier-based approach for spam-detection is

nothing new. For example, Amayri and Bouguila

(2010) conducted an extensive study of the use of

support vector machines (SVM) in spam filtering.

They analyzed the performance of SVMs in relation

to a variety of kernels and feature selection methods,

and concluded that the SVM recognizes spam

messages well. This also reinforces previous results

of SVM to text classification (Joachims, 1998).

Further, Metsis et al. (2006) explored various

variants and feature selection in Naive Bayes (NB)

for spam filtering, using multiple public email

corpora for testing the approach. The study concluded

that Flexible Bayes and Multinomial Naive Bayes

classifier models outperformed several traditional

spam filtering models.

In the same spirit, Androutsopoulos et al. (2000)

investigated the effect of attribute-set size, training-

corpus size, lemmatization, and stop-lists on the

performance of NB spam-detection.

In addition to approaches using a single classifier

to determine spam email, there are many studies

employing multiple classifiers. For instance, Saberi et

al. (2007) employed several classifiers, combining

their results for better performance. In more detail, an

Dong Y., Oussalah M. and LovÃl’n L.
A on Spam Filtering Classification: A Majority Voting like Approach.
DOI: 10.5220/0006581102930301
In Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (KDIR 2017), pages 293-301
ISBN: 978-989-758-271-4
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

ensemble of K-Nearest Neighbours (KNN), NB, and

Poisson classifiers reported a considerable

improvement in accuracy compared to the result of

any classifier alone involved in the study.

Similarly, Tretyakov (2004) combined NB, SVM,

and Perceptron classifiers. They, too, conclude that

the accuracy with respect to spam misclassified as

legitimate emails (false negative) was improved by

employing an ensemble of classifiers.

This paper advocates using multiple classifiers for

spam detection. However, our approach differs from

the state of art in several ways. First, to ensure the

generality of the approach, our research is constrained

by the configuration employed in state or art

approaches on SpamAssassin dataset, which eases

comparison. Second, our choice of individual

classifiers was motivated by both the intensive testing

across multiple classifiers as well as the reported

results in the literature. Third, instead of the binary

spam/ham classification, a finer-grained

classification model opens up the problem of analogy

between binary classification and multi-class

classification problem. This is motivated by the

presence of subcategorization; namely, “hard

legitimate emails” in the original dataset.

Section 2 of this paper details the background of the

approach. Section 3 deals with the majority-voting

based classifier approach. Section 4 highlights setting

of the experiment. The results and discussion are

reported in Section 5. Finally, conclusion and

perspective work are described in Section 6

2 BACKGROUND

2.1 Preprocessing

Building a spam filter requires a sizeable collection

of spam and ham messages (“corpus”) to train and test

the filter. Most classification methods require that the

corpus is first preprocessed. This process usually

involves steps such as converting e-mails to plain

text, removing headers, html components and non-

conventional symbols/characters (e.g. non-standard

symbols, URLs, or non-textual inputs such as

multimedia files or images), tokenizing the message

body into words, and removing “stopwords” (i.e.

common words such as “a”, “an” or “the”, that

convey very little information). Further, using e.g. the

Porter-Stemming algorithm (Willett, 2006), word

suffixes may be stripped to remove the most common

morphological and inflexional word endings.

Building a spam filter requires a sizeable

collection of spam and ham messages (“corpus”) to

train and test the filter. Most classification methods

require that the corpus is first preprocessed. This

process usually involves steps such as converting e-

mails to plain text, removing headers, html

components and non-conventional symbols/characte

rs (e.g. non-standard symbols.

2.2 Text Feature Selection

The choice of features, translating the textual input

into a numerical representation, plays key-role in

evaluating the performance of the classifier of choise.

The Vocabulary V consists of all the words (usually

in their primitive forms) available in the preprocessed

corpus. In the “bag of words" representation, each

message (document) M = (M1, M2,…,M|V|) is

represented by the subset of V contained in the

message. A vector representation of size |V| can be

utilized for this purpose. In the binary word feature

representation, the component Mi is assigned the

value 1, if it is present in the message and zero

otherwise. Similarly, in words-count (a.k.a TF; Term

Frequency) model, the value of Mi corresponds to the

frequency of occurrence of the underlying word in the

message.

Term Frequency-Inverse Document Frequency

(TF-IDF) is another simple yet effective model to

represent the message (Salton, and McGill, 1986).

TF-IDF is related to the term frequencies of the

document, with the weight Mi determined by the

product of the term-frequency and the inverse-

document frequency. Specifically,

𝑀𝑖 = 𝑓𝑖,𝑀 ∗ log (
|𝐶|

𝑓𝑖,𝐶
) (1)

when |𝐶| is the size of the corpus (total number of

messages), 𝑓𝑖,𝑀 denotes the frequency of the ith word

of V in the message M and 𝑓𝑖,𝐶 for the number of

documents (messages) in the corpus containing the ith

word.

2.3 Cross-Validation

Cross-validation is a method that helps overcome data

scarcity in constructing a classifier model while

preventing the model from overfitting. In general, we

often divide the corpus into three subsets: the training

set, the validation set, and the test set. The proportion

of each set is chosen depending on the experimental

condition and the size of the original corpus. Similar

to many other related studies, we adopted the

20:20:60 ratio for testing, validating and training. One

acknowledges, though, that this can also be

problematic in case of data sub-sampling due to lack

of high quality training dataset.

2.4 Classifiers and Modelling

Three classifiers have been selected by our study:

Support Vector Machine, Naïve Bayes and Decision

Tree. The rationale behind this choice is twofold.

First, many related spam-detection filters have been

built with these classifiers, offering a nice opportunity

for comparison. Second, a simple test with a

collection of readily available classifiers (scikit-learn

toolkit in python was employed for this purpose)

reveals that these classifiers systematically score high

in terms of classification accuracy. A short detailed

description of the configuration of these classifiers

with respect to spam detection task is described next.

Support Vector Machine (SVM) is a classification

method that maps class examples (e.g., messages) to

points in space and aims to maximize the margin

around the hyperplane separating the classes (Vapnik,

1995). It is proven to be quite robust and perform

substantially well in applications related to text

mining and categorization (Joachims, 1998).

In the context of a spam / ham classification

problem, given a training set of n points (or messages)

(𝑀𝑖
⃗⃗ ⃗⃗ , 𝑦𝑖) where 𝑀𝑖

⃗⃗ ⃗⃗ ∈ ℝ|𝑉|, 𝑦𝑖 ∈ {−1, 1}, SVM

attempts to find the "maximum-margin hyperplane"

that divides the group of points 𝑀𝑖
⃗⃗ ⃗⃗ (of dimension |V|)

for which 𝑦𝑖 = 1 (categorized as spam) from those

for which 𝑦𝑖 = −1 (categorized as ham), so that the

distance between the hyperplane and the nearest point

𝑀𝑖
⃗⃗ ⃗⃗ from either group is maximized. More formally,

let W and b be the vector normal to the hyperplane

and its displacement relative to the origin,

respectively, then the decision boundary can be found

by solving the following constrained optimization

problem

𝑀𝑖𝑛
1

2
‖𝑊‖2 (2)

Subject to

𝑦𝑖(𝑊
𝑇𝑀𝑖
⃗⃗ ⃗⃗ + 𝑏) ≥ 1 ∀𝑖 (3)

The preceding generates a quadratic programming

problem that can easily be solved using numerical

optimization packages. Several other variants of the

above optimization problem have been put forward in

order to accommodate non-linear separation through

a set of predefined Kernels, or soft-margin

optimization criterion, among others (Amayri and

Bouguila, 2010).

Naive Bayes (NB) is reported to achieve the best

common selection for the problem of text

classification and spam filtering (Metsis,

Androutsopoulos and Paliouras, 2000). Its principle

is based in estimating the conditional probability and

statistical independence of the individual features.

More formally, a class (either spam or ham) is

assigned to a message M based on the posterior

probability P(|M). For example, class “Spam” is

selected if and only if P(=Spam|M) >

P(=Ham|M)). Using Bayes’ theorem,

𝑃(|𝑀) =
𝑃(𝑀|)𝑃()

𝑃(𝑀)
∝ 𝑃(𝑀|)𝑃()

 ∝ 𝑃(𝑀1,𝑀2, … ,𝑀|𝑉||)𝑃() (4)

In the case of binary features (Mi is assigned 1 if

word Vi is present in message, zero, otherwise), we

have

𝑃(|𝑀) ∝ 𝑃()∏[𝑏𝑡𝑃(𝑉𝑡|)

|𝑉|

𝑡=1

+ (1 − 𝑏𝑡)(1 − 𝑃(𝑉𝑡|))] (5)

with bt =1 if Vt is present in a message, and zero,

otherwise.

Now (5) defines a model for generating document

feature vectors of class , in which the document

feature vector is modelled as a collection of |V|

weighted coin tosses, the tth having a probability of

success equal to P(Vt |). Individual probabilities

𝑃(𝑉𝑡|) and 𝑃() are estimated using the training set,

as the ratio of the number of messages of class in

which word 𝑉𝑡 occurs to the total number of messages

of that class and the relative frequency of messages of

class (with respect to total number of messages in

the training set), respectively.

A classical multinomial model feature, say, x in

which xt is the count of the number of occurrences of

word 𝑉𝑡 in a message, is often employed to account

for the frequency of words. In this respect, the

counterpart of (5) is given by

𝑃(|𝑀)~𝑃(|𝒙) ∝ 𝑃()∏[𝑃(𝑉𝑡|)]
𝑥𝑡

|𝑉|

𝑡=1

(6)

Prior class probabilities are estimated similarly to

Bernoulli’s model using the training set, while

probabilities 𝑃(𝑉𝑡|) are computed using the

multinomial model vector xi of each ith message as:

𝑃(𝑉𝑡|) =
∑ 𝑥𝑖𝑡𝑀𝑖:𝑀𝑖∈

∑ ∑ 𝑥𝑖𝑠𝑀𝑖:𝑀𝑖∈
|𝑉|
𝑠=1

(7)

where the sum in the numerator expression of (7)

is over all messages Mi of the training set whose class

is .

Especially, multinomial NB has been reported to

perform relatively well in the text classification

domain (McCallum and Nigram, 1998) , Metsis,

Androutsopoulos and Paliouras, 2006). The method

is found to be of particular interest when messages

contains repetitive wordings that are fully ignored in

Bernoulli model (McCallum and Nigram, 1998).

Decision Tree Classifier (DTC) is a non-

parametric classification method based on acyclic

directed graphs with hierarchical structure, from the

highest node (root) to terminal nodes (leafs) that

represent document category (spam or ham). While

the internal nodes of a decision tree denote the

different attributes, the branches between the nodes

tell us the possible values that these attributes can

have in the observed samples.

A common strategy to build a decision tree is

based on entropy and information gain. More

specifically, for a message M and using the same

notations, its entropy is given by:

𝐻(𝑀) = −𝑃(|𝑀)𝑙𝑜𝑔2𝑃(|𝑀)

−(1 − 𝑃(|𝑀))𝑙𝑜𝑔2(1 − 𝑃(|𝑀)) (8)

Similarly, given a training set D of all messages,

the information gain of the ith term of the vocabulary

is given by:

𝐼(𝐷, 𝑖) = 𝐻(𝐷) − (
|𝐷𝑖|

|𝐷|
𝐻(𝐷𝑖) +

|𝐷𝑖̅|

|𝐷|
𝐻(𝐷𝑖̅)) (9)

where 𝐷𝑖 stands for the set of messages in D that

contain the ith element, and 𝐷𝑖̅ stands for the

messages in D that do not contain the ith element of

the vocabulary. The entity under bracket in (9)

corresponds to the expected entropy when the ith

attribute was used to partition the data. Therefore, the

algorithm selects the attribute that yields the

minimum entropy (so, maximizing the information

gain) in order to split the dataset into left and right

subtree. In other words, the information gain is

calculated for each term of the vocabulary so that the

term that maximizes the information gain is selected

as a root node. The process is repeated on the subtrees

until the resulting dataset is pure, e.g., only contains

one single category (leaf node).

3 ENSEMBLE CLASSIFIER

Classifiers ensemble is a method leveraging a

combination of classifiers. The method often

performs better than a single classifier, provided

appropriate design and handling approach (Ruta and.

Gabrys, 2005). Research in ensemble classifier

started in early seventies with pioneer work of Tukey

(1997), and continued with results such as the

AdaBoost algorithm and the theoretical foundations

of information fusion theory.

However, research is far from reaching a steady

state from both theoretical and practical perspectives,

motivating this study. We focus on independent

individual classifiers with an identical training set,

reducing the problem to finding appropriate

adjudication function that links the outcome of

individual classifiers.

Majority Voting (or one of its various

refinements), where the classification of an unlabeled

instance follows the class that obtains the highest

number of votes, is well established and commonly

employed for this purpose (Ruta and. Gabrys, 2005),

building on acknowledged Condorcet’s Jury theorem.

Indeed, the majority vote method with independent

classifiers is guaranteed to give a higher accuracy

than individual classifiers when each individual

classifier has a probability of p > 0.5 to yield a correct

output. Such reasoning is also incorporated in

bagging algorithm (boostrap aggregation) (Breiman,

1996).

The simplest approach is a standard majority

voting, where each classifier is assigned one single

vote. However, to take into the distinct performance

levels of individual classifiers, the votes may be

weighed. For this purpose, various metrics have been

suggested to determine a classifier’s weight. We

follow Opitz and Shavlik (1996)’s intuitive idea,

setting the weight proportional to the classifier’s

accuracy performance on the validation set. More

formally, let 𝑍 = {𝑧1, 𝑧2, … , 𝑧𝑛} be the set of labelled

data in a validation set. For each classifier 𝐷𝑖 , one can

construct an n-dimensional binary vector 𝑌𝑖 =
{𝑦1𝑖 , 𝑦2𝑖 , … , 𝑦𝑛𝑖}, with

𝑦𝑘𝑖 = {
1 𝑖𝑓 𝑧𝑘 is correctly labelled by 𝐷𝑖

0, Otherwise.
(10)

Therefore, the accuracy of 𝐷𝑖 on a validation set

Z is given by

𝐴𝑖 = ∑ 𝑦𝑘𝑖

𝑘=1,𝑛

(11)

The latter can be normalized with respect to

accuracy of all classifiers to yields a weighting factor

as

𝛼𝑖 =
𝐴𝑖

∑ 𝐴𝑗𝑗

(12)

On the other hand, instead of looking at global

classifier accuracy, it is possible to focus on the

accuracy for each class. Accordingly, (11) can be

modified to

𝐴𝑖
𝑐 = ∑ 𝑦𝑘𝑖

𝑐

𝑘=1,𝑛

(13)

where 𝑦𝑘𝑖
𝑐 takes a value if classifier Di correctly

classifies instance zk in class c, otherwise 𝑦𝑘𝑖
𝑐 = 0.

After normalization (12), this gives the weight 𝛼𝑖
𝑐

with respect to each class label c (i.e. spam and ham

classes).

This, the output of the majority voting for an

unknown instance x can be written as:

𝐶𝑙𝑎𝑠𝑠(𝑥) = arg𝑚𝑎𝑥𝑐 ∑𝛼𝑖 . 𝐼𝑦𝑖(𝑥)
𝑐

𝑖

(14)

where 𝐼𝑦𝑖(𝑥)
𝑐 is an indicator variable indicating

whether the outcome of classifier Di for input x falls

in class c or not.

Weighing the votes with the class-specific

accuracies 𝛼𝑖
𝑐, we can rewrite (14) as

𝐶𝑙𝑎𝑠𝑠(𝑥) = arg𝑚𝑎𝑥𝑐 ∑𝛼𝑖
𝑐 . 𝐼𝑦𝑖(𝑥)

𝑐

𝑖

(15)

In the context of our study, we deliberately

restricted the number of classifiers to Naives Bayes,

SVM and Decision Tree. This choice is justified by

the wide popularity of the above classifiers in the

related research, easing comparative analysis.

Further, these classifiers performed best in our tests.

4 EXPERIMENTAL SETTING

4.1 Email Corpus

We used the SpamAssassin email corpus. It is a

historical and standardized public corpus, appearing

in a variety of studies from the past to present (Chuan,

et al., 2005), (Zhang, Zhu and Yao, 2004), (Bratko, et

al., 2006), (Katakis, Tsoumakas and Vlahavas, 2010).

All elements of email (heading, body, etc.) were

considered in the classification process.

The corpus consists of a total of 6100 legitimate

(ham) and unsolicited (spam) emails. The legitimate

emails are sub-categorised into hard legitimate emails

(spam resembling structure; subscribed promotions)

and generic emails. Spam ratio is 30%, and there are

250 hard legitimate emails as highlighted in Figure 1.

An example of instance of emails is depicted in

figures 2-4.

Figure 1: Statistics of the corpus used in the experiment.

Figure 2: A legitimate email example.

Figure 3: A hard legitimate email example.

4.2 Configurations

Prior to applying the majority voting rule (14-15), it

is important to tune the parameters of individual

classifiers such that the overall performance level is

likely maximized. On the other hand, because of

sensitivity of the performance with respect to the

distribution of hard-legitimate emails, the number of

hard ham (spam-like legitimate email) is equally

allocated to the train and test set. On the other hand,

since the performance of the algorithms depends on

the configuration of the training set, generated at

random and changing at each run, we deliberately

repeated the running of the algorithm one hundred

times. The mean and standard deviation values are

therefore reported for individual classifier results.

Figure 4: A spam mail example.

We used with most standard textual features (e.g.,

TF-IDF, TF, Binary) to restrict the scale of our study

and emphasize the expected gain from utilizing some

unexplored properties of the dataset, as well as the

limit of the majority-voting like mechanism.

We implemented classifiers using the Scikit-learn

library of the Python script language. The library is

available as open-source and built specifically for

Python, which eases the preprocessing that includes

tokenization, cleanup, among others, and post-

processing tasks.

5 EXPERIMENTAL SETTING

5.1 SVM

Scikit-learn allows different types of kernel functions

for an SVM model. While some studies state that the

majority of text classification problems can be solved

by a linear kernel (Joachims, 1998), (Zhang, Zhu and

Yao, 2004), others argue that the performance varies

across different parameters and kernel settings

(Amayri and N. Bouguila, 2010). To make a fair

assertion, we ran a set of validation tests, modelling

classifiers with different kernel functions provided by

Scikit-learn library. A comparative result is presented

in Figure 5 and Table 1.

Figure 5 shows that given a training set sampled

from the corpus, the linear kernel (with TF-IDF

features) performs best. We investigated also the

features, with TF-IDF compared to binary and TF

features in Table 1. The results show the TF-IDF

features consistently performed very well on all

kernel types with, justifying the choice in further

studies.

Figure 5: SVM performance evaluation by four different

kernel functions applied: Linear, Polynomial, RBF, and

Sigmoid; kernel degree is set to 1 and 0.7 for gamma value.

Table 1: Results of cross-validation, with SVM kernel

models with different feature selection approaches. The

total hard ham (spam-like legitimate email) is joined in the

training set.

 Linear Polynomial RBF Sigmoid

Binary 0.95

(∓ 𝟎. 𝟑𝟏)

0.94

(∓ 0.32)

0.70

(∓ 0.00)

0.70

(∓ 0.00)

TF 0.94

(∓ 𝟎. 𝟑𝟏)

0.92

(∓ 0.29)

0.69

(∓ 0.00)

0.69

(∓ 0.00)

TF-

IDF
0.94

(∓ 𝟎. 𝟐𝟖)

0.91

(∓ 0.25)
0.94

(∓ 𝟎. 𝟐𝟖)

0.93

(∓ 0.28)

5.2 Naïve Bayes

Similarly to SVM, we tested the performance of the

NB classifier with respect to the three most

commonly employed features (binary features, TF,

TF-IDF). We also compared the multinomial and

multivariate based models (Schneider),

Eyheramendy, Lewis and Madigan, 2003) of NB

implementation. The results are summarized in Table

2.

Table 2: NB model comparison by feature selection

methods; results of cross-validation.

 Multinomial Multivariate

Binary 0.97 (∓ 𝟎. 𝟏𝟏) 0.92 (∓ 0.14)

TF 0.93 (∓ 𝟎. 𝟎𝟕) 0.92 (∓ 0.13)

TF-IDF 0.86 (∓ 0.07) 0.92 (∓ 𝟎. 𝟏𝟑)

Table 2 shows that the multinomial model

performs better with binary word feature model,

while the performance of the multivariate model

seems to be more consistent regardless of the

selection of the feature models.

We investigated also the alpha-parameter of the

multinomial classifier model (since it showed a better

performance in average; Table 2), with the accuracy

on the validation set for various values of alpha

reported in Fig. 6. The result indicates a model with

the default alpha value a≤1 yields the best

performance.

Figure 6: NB performance measure by incremental alpha

value.

5.3 Decision Tree Classifier

The DT classifier results for the three distinct features

are summarized in Table 3. The results show that

given the corpus, DTC performs consistently well

regardless of applied feature selection approach.

Table 3: DTC Accuracy with respect to various features and

two impurity measures.

 DT Accuracy

Binary 0.96 (∓ 0.12)

TF 0.97 (∓ 𝟎. 𝟎𝟗)

TF-IDF 0.96 (∓ 0.10)

Entropy

Impurity
0.98

Gini Impurity 0.97

We also tested the impurity criterion (Tan,

Steinbach. and Kumar, 2006) by the DTC algorithm

to see whether entropy or gini-impurity based

criterion is preferred. The results shown in Table. 3

supports the default entropy criterion for the DT

classifier.

5.4 Majority-Voting Classifier

An ensemble of three classification algorithms (SVM,

DTC, and NB) is evaluated to measure the

performance of the classification method on the test

set. First, we further tuned individual classifier

models using cross-validation in order to maximize

their performance levels. The results displayed in

Table 4 distinguishes between the case where the

“hard-ham” cases are shifted dominantly to the test-

dataset and the case where they are uniformly

distributed. More specifically, the two experiments

allocate the number of hard-ham in different

proportion, where the first experiment puts the entire

hard-ham into test data set, while the second one

selects the sample data on the given input parameter

basis (random selection for each categories of

emails). The result shows that the majority voting

method performs remarkably well as compared to

individual performance levels. Especially in the first

case, the majority-voting based classifier provided

more robustness and a higher average performance in

the final decision. For the sake of notation

simplification in Table 4 and subsequent ones, one

shall denote by the accuracy, precision, recall, F1-

score by A, P, R an F.

In Table 5, we tested the majority voting

according to the weightings (14) and (15), accounting

for individual classifier performance on the validation

set.

Table 4: Classifier model performance comparison.

The result shown in Table 5 indicates that a

standard majority voting scheme outperforms the

weighted majority classifier regardless of the

weighing ((14) or (15)) used. To explain the result,

Table 6 exhibits the accuracy of individual classifiers

on spam and ham class category (the global classifier

accuracy being the average of the two accuracies).

Table 5: Comparison of weighted majority classifiers.

Table 6: Confidence table: weight for each class is given

based on f1-score of the class of each classifier. LC:

confidence value on legitimate emails, SC: confidence

value on spam emails.

 F1-score Confidence

 H S HC SC

SVM 0.975 0.944 0.337 0.341

MNB 0.963 0.916 0.333 0.331

DT 0.953 0.902 0.329 0.326

Table 6 clearly indicates that SVM outperforms other

classifiers in terms of classification accuracy on the

validation set, which, in turn, makes the result of the

weighted classifiers very much biased by the outcome of

SVM, and, therefore, fails to capture the diversity among

the different classifiers.

5.4 Use of Subcategorization

The SpamAssassin public corpus contains 250 emails

labelled as "hard-ham". For the hard-ham emails, the

content resembles a spam email. This makes it

difficult for a model to make the classification

decision. Indeed, all of our models struggled with

classifying hard-ham: including the hard-ham emails

in a test set pulled down the accuracy of classifies up

to 11% (Table 4).

To tackle this, we defined hard-ham as an

independent class apart from the legitimate and ham

emails. Accordingly, we trained the individual

classifiers to classify all three classes. The result

exhibited in Table 7 shows a substantial improvement

in accuracy of around 0.991 (SVM) and 0.988

(SVM+NB+DTC) in comparison to the data present

in Table 5.

Table 7: Classification performance of models trained and

tested on the multi-class base.

This result raises further research questions for the

use of subcategorization in order to enhance the

classification result. For example, given a binary

classification problem that categorizes classes c1 and

c2, if elements of class c1 can further be split into c3

and c4 classes, how does the classification of c2, c3,

c4 enhance or degrade the initial binary classification

problem. Without speculating on the result, the

problem is ultimately linked to the nature of features

and the quality of the training set, especially with

respect to the subcategory dataset. This constitutes a

part of our future investigation in this context, which

lies down promising theoretical foundation. Table 8

summarizes the performance of the binary and multi-

class classification.

The performance level achieved competes with

state of the art results obtained using the same corpus.

For instance, Chuan, et al., (2005) reported a spam

precision and a spam recall of 98.97 and 93.58

respectively. A lower classification performance is

also reported in Bratko et al., (2006).

Table 8: Comparison of model performance, measured by

different metrics.

 NB ANN-BP ANN-LVQ SVM+NB+
DTC (Multi

class)

SVM+NB+DT
C (Binary

class)

Spam
precision

97.63 98.42 98.97 98 99.50

Spam

recall

86.48 91.26 93.58 98 99.01

6 CONCLUSION

This paper addressed the usefulness of majority-

voting based classification strategy for spam

identification with specific focus to SpamAssassin

corpus combining machine learning and natural

language processing based techniques. Three most

commonly employed classifiers; namely, Support

vector machine, Naïves Bayes and Decision Tree

have been implemented and tested with textual

features. The result shows that standard majority

voting strategy can increases the performance of

individual classifiers in terms of accuracy, precision,

recall metrics. Nevertheless, the use of weighted

majority classifier according to accuracy of

individual classifiers on validating set fails to display

the expected improvement. On the other hand, the

study also reveals the importance of exploring the

subcategorization that exists in the original dataset,

where substantial improvement has been noticed,

which brings the achieved accuracy marginally

outperforming many of the state of the art results

employing the same dataset. This also opens

interesting perspective work in order to explore the

theoretical foundation of such mechanism.

REFERENCES

R. Shams, and R. E. Mercer, "Classifying spam emails

using text and readability features.," in Data Mining

(ICDM), 2013 IEEE 13th International Conference on,

2013.

The Radicati Group, Inc., "Email Statistics Report, 2015-

2019," Retrieved Augest 14, 2017 from Radicati's

database.

Z. Chuan, et al., "A LVQ-based neural network anti-spam

email approach.," ACM SIGOPS Operating Systems

Review, vol. 39, no. 1, pp. 34-39, 2005.

E. Harris, "The Next Step in the Spam Control War:

Greylisting by Evan Harris," 21 08 2003. [Online].

Available:

http://projects.puremagic.com/greylisting/whitepaper.h

tml. [Accessed 2 08 2017].

O. Amayri and N. Bouguila, "A study of spam filtering

using support vector machines.," Artificial Intelligence

Review, vol. 34, no. 1, pp. 73-108, 2010.

T. Joachims, "Text categorization with support vector

machines: Learning with many relevant features.," in

Machine learning, 1998.

V. Metsis, I. Androutsopoulos and G. Paliouras, "Spam

filtering with naive bayes-which naive bayes?," CEAS,

vol. 17, pp. 28-69, 2006.

I. Androutsopoulos, et al., "An evaluation of naive bayesian

anti-spam filtering.," 2000.

A. Saberi, M. Vahidi and B. M. Bidgoli, "Learn to detect

phishing scams using learning and ensemble?

methods.," in Proceedings of the 2007 IEEE/WIC/ACM

International Conferences on Web Intelligence and

Intelligent Agent Technology-Workshops, 2007.

K. Tretyakov, "Machine learning techniques in spam

filtering.," Data Mining Problem-oriented Seminar,

vol. 3, no. 177, pp. 60-79, 2004.

P. Willett, "The Porter stemming algorithm: then and

now.," Program, vol. 40, no. 3, pp. 219-223, 2006.

G. Salton, and M. J. McGill, "Introduction to Modern

Information Retrieval.," 1986.

V. Vapnik, "The nature of statistical learning theory," 1995.

A. McCallum and K. Nigram, "A comparison of event

models for naive bayes text classification," AAAI-98

workshop on learning for text categorization, vol. 752,

pp. 41-48, 1998.

D. Ruta and B. Gabrys, "Classifier selection for majority

voting.," Information fusion, vol. 6, no. 1, pp. 63-81,

2005.

J. W. Tukey, "Exploratory data analysis," 1977.

L. Breiman, "Bagging predictors," Machine learning, vol.

24, no. 2, pp. 123-140, 1996.

D. W. Opitz, and J. W. Shavlik, "Generating accurate and

diverse members of a neural-network ensemble," 1996.

L. Zhang, J. Zhu and T. Yao, "An evaluation of statistical

spam filtering techniques.," ACM Transactions on

Asian Language Information Processing , vol. 3, no. 4,

pp. 243-269, 2004.

A. Bratko, et al., "Spam filtering using statistical data

compression models.," Journal of machine learning

research, vol. 7, pp. 2673-2698, Dec 2006.

I. Katakis, G. Tsoumakas and I. Vlahavas, "Tracking

recurring contexts using ensemble classifiers: an

application to email filtering.," Knowledge and

Information Systems, vol. 22, no. 3, pp. 371-391, 2010.

K. M. Schneider, "On word frequency information and

negative evidence in Naive Bayes text classification.,"

in Advances in Natural Language Processing.

S. Eyheramendy, D. D. Lewis and D. Madigan, "On the

naive bayes model for text categorization," Citeseer,

2003.

PN. Tan, M. Steinbach and V. Kumar., "Classification:

basic concepts, decision trees, and model evaluation."

in Introduction to Data Mining, 2006, pp. 145-205.

