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Abstract: Despite the improvement in filtering tools and informatics security, spam still cause substantial damage to 

public and private organizations. In this paper, we present a majority-voting based approach in order to 

identify spam messages. A new methodology for building majority voting classifier is presented and tested. 

The results using SpamAssassin dataset indicates non-negligible improvement over state of art, which paves 

the way for further development and applications.  

1 INTRODUCTION 

Global email traffic is constantly growing (The 

Radicati Group, 2017), and along with it, the number 

of unsolicited email (“spam“) is on the rise (Shams 

and Mercer, 2013). Spam is sent for various reasons: 

for promotion campaigns, advertisement, spreading 

backdoors or malicious programs, to name but a few. 

Excessive amounts of spam are not only harming 

individuals by creating frustrating situations for the 

user, but also generate major problems for the 

sustainability of the SMEs and IT services.  

To cope with the increasing spam traffic, filtering 

techniques to discriminate genuine from spam emails 

require constant improvement. However, also spam 

itself evolves, adjusting to the changes in the filters. 

This evolution together with the high variability in the 

textual contents of spam messages makes the 

development of new algorithms and methodologies 

challenging, with standard pre-processing and natural 

language processing techniques often showing their 

inherent limitations.  

This motivates extensive work in development of 

anti-spam techniques. The latter can be classified 

(Chuan, et al., 2005) into i) a content-based approach, 

where the email body is tested for selected key-words, 

or patterns that are typical for spams; ii) a header-

based approach, which requires collecting email 

addresses of known spammers and known non-

spammers; iii) a protocol-based approach, 

introducing new procedures for sender authentication 

such as visiting specific websites, collecting personal 

codes, adding new entries to DNS servers, or the the 

greylisting approach (Harris, 2017), where the 

receiving mail server requires an unknown sender to 

resend the email again later; or iv) a social network 

based approach, with a graph based metric such as the 

clustering coefficient is used to test the likelihood of 

spam (speculating that spammers send thousands or 

even millions of messages).  

This paper focuses on the first class, namely, the 

content-based approach. We propose a new method 

using an ensemble of classifiers.  

A classifier-based approach for spam-detection is 

nothing new. For example, Amayri and Bouguila 

(2010) conducted an extensive study of the use of 

support vector machines (SVM) in spam filtering. 

They analyzed the performance of SVMs in relation 

to a variety of kernels and feature selection methods, 

and concluded that the SVM recognizes spam 

messages well. This also reinforces previous results 

of SVM to text classification (Joachims, 1998).  

Further, Metsis et al. (2006) explored various 

variants and feature selection in Naive Bayes (NB) 

for spam filtering, using multiple public email 

corpora for testing the approach. The study concluded 

that Flexible Bayes and Multinomial Naive Bayes 

classifier models outperformed several traditional 

spam filtering models. 

In the same spirit, Androutsopoulos et al. (2000) 

investigated the effect of attribute-set size, training-

corpus size, lemmatization, and stop-lists on the 

performance of NB spam-detection. 

In addition to approaches using a single classifier 

to determine spam email, there are many studies 

employing multiple classifiers. For instance, Saberi et 

al. (2007) employed several classifiers, combining 

their results for better performance. In more detail, an 
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ensemble of K-Nearest Neighbours (KNN), NB, and 

Poisson classifiers reported a considerable 

improvement in accuracy compared to the result of 

any classifier alone involved in the study.  

Similarly, Tretyakov (2004) combined NB, SVM, 

and Perceptron classifiers. They, too, conclude that 

the accuracy with respect to spam misclassified as 

legitimate emails (false negative) was improved by 

employing an ensemble of classifiers. 

This paper advocates using multiple classifiers for 

spam detection. However, our approach differs from 

the state of art in several ways. First, to ensure the 

generality of the approach, our research is constrained 

by the configuration employed in state or art 

approaches on SpamAssassin dataset, which eases 

comparison. Second, our choice of individual 

classifiers was motivated by both the intensive testing 

across multiple classifiers as well as the reported 

results in the literature. Third, instead of the binary 

spam/ham classification, a finer-grained 

classification model opens up the problem of analogy 

between binary classification and multi-class 

classification problem. This is motivated by the 

presence of subcategorization; namely, “hard 

legitimate emails” in the original dataset.   

Section 2 of this paper details the background of the 

approach. Section 3 deals with the majority-voting 

based classifier approach. Section 4 highlights setting 

of the experiment. The results and discussion are 

reported in Section 5. Finally, conclusion and 

perspective work are described in Section 6 

2 BACKGROUND 

2.1 Preprocessing 

Building a spam filter requires a sizeable collection 

of spam and ham messages (“corpus”) to train and test 

the filter. Most classification methods require that the 

corpus is first preprocessed. This process usually 

involves steps such as converting e-mails to plain 

text, removing headers, html components and non-

conventional symbols/characters (e.g. non-standard 

symbols, URLs, or non-textual inputs such as 

multimedia files or images), tokenizing the message 

body into words, and removing “stopwords” (i.e. 

common words such as “a”, “an” or “the”, that 

convey very little information). Further, using e.g. the 

Porter-Stemming algorithm (Willett, 2006), word 

suffixes may be stripped to remove the most common 

morphological and inflexional word endings. 

Building a spam filter requires a sizeable 

collection of spam and ham messages (“corpus”) to 

train and test the filter. Most classification methods 

require that the corpus is first preprocessed. This 

process usually involves steps such as converting e-

mails to plain text, removing headers, html 

components and non-conventional symbols/characte

rs (e.g. non-standard symbols. 

2.2 Text Feature Selection 

The choice of features, translating the textual input 

into a numerical representation, plays key-role in 

evaluating the performance of the classifier of choise. 

The Vocabulary V consists of all the words (usually 

in their primitive forms) available in the preprocessed 

corpus. In the “bag of words" representation, each 

message (document) M = (M1, M2,…,M|V|) is 

represented by the subset of V contained in the 

message. A vector representation of size |V| can be 

utilized for this purpose. In the binary word feature 

representation, the component Mi is assigned the 

value 1, if it is present in the message and zero 

otherwise. Similarly, in words-count (a.k.a TF; Term 

Frequency) model, the value of Mi corresponds to the 

frequency of occurrence of the underlying word in the 

message. 

Term Frequency-Inverse Document Frequency 

(TF-IDF) is another simple yet effective model to 

represent the message (Salton, and McGill, 1986). 

TF-IDF is related to the term frequencies of the 

document, with the weight Mi determined by the 

product of the term-frequency and the inverse-

document frequency. Specifically, 
 

𝑀𝑖 = 𝑓𝑖,𝑀 ∗ log (
|𝐶|

𝑓𝑖,𝐶
) (1) 

 

when |𝐶| is the size of the corpus (total number of 

messages), 𝑓𝑖,𝑀 denotes the frequency of the ith word 

of V in the message M and 𝑓𝑖,𝐶  for the number of 

documents (messages) in the corpus containing the ith 

word. 

2.3 Cross-Validation 

Cross-validation is a method that helps overcome data 

scarcity in constructing a classifier model while 

preventing the model from overfitting. In general, we 

often divide the corpus into three subsets: the training 

set, the validation set, and the test set.  The proportion 

of each set is chosen depending on the experimental 

condition and the size of the original corpus. Similar 

to many other related studies, we adopted the 

20:20:60 ratio for testing, validating and training. One 

acknowledges, though, that this can also be 



 

problematic in case of data sub-sampling due to lack 

of high quality training dataset. 

2.4 Classifiers and Modelling 

Three classifiers have been selected by our study: 

Support Vector Machine, Naïve Bayes and Decision 

Tree. The rationale behind this choice is twofold. 

First, many related spam-detection filters have been 

built with these classifiers, offering a nice opportunity 

for comparison. Second, a simple test with a 

collection of readily available classifiers (scikit-learn 

toolkit in python was employed for this purpose) 

reveals that these classifiers systematically score high 

in terms of classification accuracy. A short detailed 

description of the configuration of these classifiers 

with respect to spam detection task is described next. 
 

Support Vector Machine (SVM) is a classification 

method that maps class examples (e.g., messages) to 

points in space and aims to maximize the margin 

around the hyperplane separating the classes (Vapnik, 

1995). It is proven to be quite robust and perform 

substantially well in applications related to text 

mining and categorization (Joachims, 1998). 

In the context of a spam / ham classification 

problem, given a training set of n points (or messages) 

(𝑀𝑖
⃗⃗ ⃗⃗ , 𝑦𝑖)  where 𝑀𝑖

⃗⃗ ⃗⃗ ∈ ℝ|𝑉|, 𝑦𝑖 ∈ {−1, 1},  SVM 

attempts to find the "maximum-margin hyperplane" 

that divides the group of points 𝑀𝑖
⃗⃗ ⃗⃗  (of dimension |V|) 

for which 𝑦𝑖 = 1 (categorized as spam) from those 

for which 𝑦𝑖 = −1 (categorized as ham), so that the 

distance between the hyperplane and the nearest point 

𝑀𝑖
⃗⃗ ⃗⃗  from either group is maximized. More formally, 

let W and b be the vector normal to the hyperplane 

and its displacement relative to the origin, 

respectively, then the decision boundary can be found 

by solving the following constrained optimization 

problem 
 

𝑀𝑖𝑛 
1

2
‖𝑊‖2 (2) 

 

Subject to 

𝑦𝑖(𝑊
𝑇𝑀𝑖
⃗⃗ ⃗⃗  + 𝑏) ≥ 1   ∀𝑖 (3) 

 

The preceding generates a quadratic programming 

problem that can easily be solved using numerical 

optimization packages. Several other variants of the 

above optimization problem have been put forward in 

order to accommodate non-linear separation through 

a set of predefined Kernels, or soft-margin 

optimization criterion, among others (Amayri and 

Bouguila, 2010).  

Naive Bayes (NB) is reported to achieve the best 

common selection for the problem of text 

classification and spam filtering (Metsis, 

Androutsopoulos and Paliouras, 2000). Its principle 

is based in estimating the conditional probability and 

statistical independence of the individual features. 

More formally, a class  (either spam or ham) is 

assigned to a message M based on the posterior 

probability P(|M). For example, class “Spam” is 

selected if and only if P(=Spam|M) > 

P(=Ham|M)). Using Bayes’ theorem, 

𝑃( |𝑀) =
𝑃(𝑀|)𝑃()

𝑃(𝑀)
∝ 𝑃(𝑀|)𝑃()

                 ∝ 𝑃(𝑀1,𝑀2, … ,𝑀|𝑉||)𝑃() (4) 

 

In the case of binary features (Mi is assigned 1 if 

word Vi is present in message, zero, otherwise), we 

have 

𝑃( |𝑀) ∝ 𝑃( )∏[𝑏𝑡𝑃(𝑉𝑡|)

|𝑉|

𝑡=1

+ (1 − 𝑏𝑡)(1 − 𝑃(𝑉𝑡|))] (5) 

with bt =1 if Vt is present in a message, and zero, 

otherwise. 

Now (5) defines a model for generating document 

feature vectors of class  , in which the document 

feature vector is modelled as a collection of |V| 

weighted coin tosses, the tth having a probability of 

success equal to P(Vt | ). Individual probabilities 

𝑃(𝑉𝑡|) and 𝑃() are estimated using the training set, 

as the ratio of the number of messages of class   in 

which word 𝑉𝑡 occurs to the total number of messages 

of that class and the relative frequency of messages of 

class   (with respect to total number of messages in 

the training set), respectively. 
 

A classical multinomial model feature, say, x in 

which xt is the count of the number of occurrences of 

word 𝑉𝑡 in a message, is often employed to account 

for the frequency of words. In this respect, the 

counterpart of (5) is given by 
 

𝑃( |𝑀)~𝑃(|𝒙) ∝ 𝑃()∏[𝑃(𝑉𝑡|)]
𝑥𝑡

|𝑉|

𝑡=1

(6) 

Prior class probabilities are estimated similarly to 

Bernoulli’s model using the training set, while 

probabilities 𝑃(𝑉𝑡|)  are computed using the 

multinomial model vector xi of each ith message as: 

𝑃(𝑉𝑡|) =
∑ 𝑥𝑖𝑡𝑀𝑖:𝑀𝑖∈

∑ ∑ 𝑥𝑖𝑠𝑀𝑖:𝑀𝑖∈
|𝑉|
𝑠=1

(7) 

where the sum in the numerator expression of (7) 

is over all messages Mi of the training set whose class 

is . 



 

Especially, multinomial NB has been reported to 

perform relatively well in the text classification 

domain (McCallum and Nigram, 1998) , Metsis, 

Androutsopoulos and Paliouras, 2006). The method 

is found to be of particular interest when messages 

contains repetitive wordings that are fully ignored in 

Bernoulli model (McCallum and Nigram, 1998). 

Decision Tree Classifier (DTC) is a non-

parametric classification method based on acyclic 

directed graphs with hierarchical structure, from the 

highest node (root) to terminal nodes (leafs) that 

represent document category (spam or ham). While 

the internal nodes of a decision tree denote the 

different attributes, the branches between the nodes 

tell us the possible values that these attributes can 

have in the observed samples.  

A common strategy to build a decision tree is 

based on entropy and information gain. More 

specifically, for a message M and using the same 

notations, its entropy is given by: 
 

𝐻(𝑀) = −𝑃( |𝑀)𝑙𝑜𝑔2𝑃( |𝑀)

−(1 − 𝑃( |𝑀))𝑙𝑜𝑔2(1 − 𝑃( |𝑀)) (8)
 

Similarly, given a training set D of all messages, 

the information gain of the ith term of the vocabulary 

is given by: 
 

𝐼(𝐷, 𝑖) = 𝐻(𝐷) − (
|𝐷𝑖|

|𝐷|
𝐻(𝐷𝑖) +

|𝐷𝑖̅|

|𝐷|
𝐻(𝐷𝑖̅)) (9) 

where 𝐷𝑖  stands for the set of messages in D that 

contain the ith element, and 𝐷𝑖̅  stands for the 

messages in D that do not contain the ith element of 

the vocabulary. The entity under bracket in (9) 

corresponds to the expected entropy when the ith 

attribute was used to partition the data. Therefore, the 

algorithm selects the attribute that yields the      

minimum entropy (so, maximizing the information 

gain) in order to split the dataset into left and right 

subtree. In other words, the information gain is 

calculated for each term of the vocabulary so that the 

term that maximizes the information gain is selected 

as a root node. The process is repeated on the subtrees 

until the resulting dataset is pure, e.g., only contains 

one single category (leaf node). 

3 ENSEMBLE CLASSIFIER 

Classifiers ensemble is a method leveraging a 

combination of classifiers. The method often 

performs better than a single classifier, provided 

appropriate design and handling approach (Ruta and. 

Gabrys, 2005). Research in ensemble classifier 

started in early seventies with pioneer work of Tukey 

(1997), and continued with results such as the 

AdaBoost algorithm and the theoretical foundations 

of information fusion theory.   

However, research is far from reaching a steady 

state from both theoretical and practical perspectives, 

motivating this study. We focus on independent 

individual classifiers with an identical training set, 

reducing the problem to finding appropriate 

adjudication function that links the outcome of 

individual classifiers.  

Majority Voting (or one of its various 

refinements), where the classification of an unlabeled 

instance follows the class that obtains the highest 

number of votes, is well established and commonly 

employed for this purpose (Ruta and. Gabrys, 2005), 

building on acknowledged Condorcet’s Jury theorem.  

Indeed, the majority vote method with independent 

classifiers is guaranteed to give a higher accuracy 

than individual classifiers when each individual 

classifier has a probability of p > 0.5 to yield a correct 

output.  Such reasoning is also incorporated in 

bagging algorithm (boostrap aggregation) (Breiman, 

1996). 

The simplest approach is a standard majority 

voting, where each classifier is assigned one single 

vote. However, to take into the distinct performance 

levels of individual classifiers, the votes may be 

weighed. For this purpose, various metrics have been 

suggested to determine a classifier’s weight. We 

follow Opitz and Shavlik (1996)’s intuitive idea, 

setting the weight proportional to the classifier’s 

accuracy performance on the validation set. More 

formally, let 𝑍 = {𝑧1, 𝑧2, … , 𝑧𝑛} be the set of labelled 

data in a validation set. For each classifier 𝐷𝑖 , one can 

construct an n-dimensional binary vector 𝑌𝑖 =
{𝑦1𝑖 , 𝑦2𝑖 , … , 𝑦𝑛𝑖}, with  
 

𝑦𝑘𝑖 = {
1   𝑖𝑓  𝑧𝑘  is correctly labelled by 𝐷𝑖

0,                                       Otherwise.  
(10) 

 

Therefore, the accuracy of 𝐷𝑖  on a validation set 

Z is given by 
 

𝐴𝑖 = ∑ 𝑦𝑘𝑖

𝑘=1,𝑛

(11) 

The latter can be normalized with respect to 

accuracy of all classifiers to yields a weighting factor 

as 

𝛼𝑖 =
𝐴𝑖

∑ 𝐴𝑗𝑗

(12) 

 

On the other hand, instead of looking at global 

classifier accuracy, it is possible to focus on the 

accuracy for each class. Accordingly, (11) can be 

modified to 



 

𝐴𝑖
𝑐 = ∑ 𝑦𝑘𝑖

𝑐

𝑘=1,𝑛

(13) 

 

where 𝑦𝑘𝑖
𝑐  takes a value if classifier Di correctly 

classifies instance zk in class c, otherwise 𝑦𝑘𝑖
𝑐 = 0.  

After normalization (12), this gives the weight 𝛼𝑖
𝑐 

with respect to each class label c (i.e. spam and ham 

classes). 

This, the output of the majority voting for an 

unknown instance x can be written as: 
 

𝐶𝑙𝑎𝑠𝑠(𝑥) = arg𝑚𝑎𝑥𝑐 ∑𝛼𝑖 . 𝐼𝑦𝑖(𝑥)
𝑐

𝑖

(14) 

 

where 𝐼𝑦𝑖(𝑥)
𝑐  is an indicator variable indicating 

whether the outcome of classifier Di for input x falls 

in class c or not. 

Weighing the votes with the class-specific 

accuracies 𝛼𝑖
𝑐, we can rewrite (14) as 

 

𝐶𝑙𝑎𝑠𝑠(𝑥) = arg𝑚𝑎𝑥𝑐 ∑𝛼𝑖
𝑐 . 𝐼𝑦𝑖(𝑥)

𝑐

𝑖

(15) 

 

In the context of our study, we deliberately 

restricted the number of classifiers to Naives Bayes, 

SVM and Decision Tree. This choice is justified by 

the wide popularity of the above classifiers in the 

related research, easing comparative analysis. 

Further, these classifiers performed best in our tests. 

4 EXPERIMENTAL SETTING 

4.1 Email Corpus 

We used the SpamAssassin email corpus. It is a 

historical and standardized public corpus, appearing 

in a variety of studies from the past to present (Chuan, 

et al., 2005), (Zhang, Zhu and Yao, 2004), (Bratko, et 

al., 2006), (Katakis, Tsoumakas and Vlahavas, 2010). 

All elements of email (heading, body, etc.) were 

considered in the classification process.  

The corpus consists of a total of 6100 legitimate 

(ham) and unsolicited (spam) emails. The legitimate 

emails are sub-categorised into hard legitimate emails 

(spam resembling structure; subscribed promotions) 

and generic emails. Spam ratio is 30%, and there are 

250 hard legitimate emails as highlighted in Figure 1. 

An example of instance of emails is depicted in 

figures 2-4. 

 

Figure 1: Statistics of the corpus used in the experiment. 

 

Figure 2: A legitimate email example. 

 

Figure 3: A hard legitimate email example. 

4.2 Configurations 

Prior to applying the majority voting rule (14-15), it 

is important to tune the parameters of individual 

classifiers such that the overall performance level is 

likely maximized. On the other hand, because of 

sensitivity of the performance with respect to the 

distribution of hard-legitimate emails, the number of 

hard ham (spam-like legitimate email) is equally 

allocated to the train and test set. On the other hand, 

since the performance of the algorithms depends on 

the configuration of the training set, generated at 

random and changing at each run, we deliberately 

repeated the running of the algorithm one hundred 

times. The mean and standard deviation values are 

therefore reported for individual classifier results.  



 

 

Figure 4: A spam mail example. 

We used with most standard textual features (e.g., 

TF-IDF, TF, Binary) to restrict the scale of our study 

and emphasize the expected gain from utilizing some 

unexplored properties of the dataset, as well as the 

limit of the majority-voting like mechanism.  

We implemented classifiers using the Scikit-learn 

library of the Python script language. The library is 

available as open-source and built specifically for 

Python, which eases the preprocessing that includes 

tokenization, cleanup, among others, and post-

processing tasks. 

5 EXPERIMENTAL SETTING 

5.1 SVM 

Scikit-learn allows different types of kernel functions 

for an SVM model. While some studies state that the 

majority of text classification problems can be solved 

by a linear kernel (Joachims, 1998), (Zhang, Zhu and 

Yao, 2004), others argue that the performance varies 

across different parameters and kernel settings 

(Amayri and N. Bouguila, 2010). To make a fair 

assertion, we ran a set of validation tests, modelling 

classifiers with different kernel functions provided by 

Scikit-learn library. A comparative result is presented 

in Figure 5 and Table 1.  

Figure 5 shows that given a training set sampled 

from the corpus, the linear kernel (with TF-IDF 

features) performs best. We investigated also the 

features, with TF-IDF compared to binary and TF 

features in Table 1. The results show the TF-IDF 

features consistently performed very well on all 

kernel types with, justifying the choice in further 

studies. 

 

Figure 5: SVM performance evaluation by four different 

kernel functions applied: Linear, Polynomial, RBF, and 

Sigmoid; kernel degree is set to 1 and 0.7 for gamma value. 

Table 1: Results of cross-validation, with SVM kernel 

models with different feature selection approaches. The 

total hard ham (spam-like legitimate email) is joined in the 

training set. 

 Linear Polynomial RBF Sigmoid 

Binary 0.95 

(∓ 𝟎. 𝟑𝟏) 

0.94 

(∓ 0.32) 

0.70 

(∓ 0.00) 

0.70 

(∓ 0.00) 

TF 0.94 

(∓ 𝟎. 𝟑𝟏) 

0.92 

(∓ 0.29) 

0.69 

(∓ 0.00) 

0.69 

(∓ 0.00) 

TF-

IDF 
0.94 

(∓ 𝟎. 𝟐𝟖) 

0.91 

(∓ 0.25) 
0.94 

(∓ 𝟎. 𝟐𝟖) 

0.93 

(∓ 0.28) 

5.2 Naïve Bayes 

Similarly to SVM, we tested the performance of the 

NB classifier with respect to the three most 

commonly employed features (binary features, TF, 

TF-IDF). We also compared the multinomial and 

multivariate based models (Schneider), 

Eyheramendy, Lewis and Madigan, 2003) of NB 

implementation. The results are summarized in Table 

2. 

Table 2: NB model comparison by feature selection 

methods; results of cross-validation. 

 Multinomial Multivariate 

Binary 0.97 (∓ 𝟎. 𝟏𝟏) 0.92 (∓ 0.14) 

TF 0.93 (∓ 𝟎. 𝟎𝟕) 0.92 (∓ 0.13) 

TF-IDF 0.86 (∓ 0.07) 0.92 (∓ 𝟎. 𝟏𝟑) 



 

Table 2 shows that the multinomial model 

performs better with binary word feature model, 

while the performance of the multivariate model 

seems to be more consistent regardless of the 

selection of the feature models.  

We investigated also the alpha-parameter of the 

multinomial classifier model (since it showed a better 

performance in average; Table 2), with the accuracy 

on the validation set for various values of alpha 

reported in Fig. 6. The result indicates a model with 

the default alpha value a≤1 yields the best 

performance. 

 

Figure 6: NB performance measure by incremental alpha 

value. 

5.3 Decision Tree Classifier 

The DT classifier results for the three distinct features 

are summarized in Table 3. The results show that 

given the corpus, DTC performs consistently well 

regardless of applied feature selection approach. 

Table 3: DTC Accuracy with respect to various features and 

two impurity measures. 

 DT Accuracy  

Binary 0.96 (∓ 0.12) 

TF 0.97 (∓ 𝟎. 𝟎𝟗) 

TF-IDF 0.96 (∓ 0.10) 

Entropy 

Impurity 
0.98 

Gini Impurity 0.97 

We also tested the impurity criterion (Tan, 

Steinbach. and Kumar, 2006) by the DTC algorithm 

to see whether entropy or gini-impurity based 

criterion is preferred. The results shown in Table. 3 

supports the default entropy criterion for the DT 

classifier. 

 

5.4 Majority-Voting Classifier 

An ensemble of three classification algorithms (SVM, 

DTC, and NB) is evaluated to measure the 

performance of the classification method on the test 

set. First, we further tuned individual classifier 

models using cross-validation in order to maximize 

their performance levels. The results displayed in 

Table 4 distinguishes between the case where the 

“hard-ham” cases are shifted dominantly to the test-

dataset and the case where they are uniformly 

distributed. More specifically, the two experiments 

allocate the number of hard-ham in different 

proportion, where the first experiment puts the entire 

hard-ham into test data set, while the second one 

selects the sample data on the given input parameter 

basis (random selection for each categories of 

emails). The result shows that the majority voting 

method performs remarkably well as compared to 

individual performance levels. Especially in the first 

case, the majority-voting based classifier provided 

more robustness and a higher average performance in 

the final decision. For the sake of notation 

simplification in Table 4 and subsequent ones, one 

shall denote by the accuracy, precision, recall, F1-

score by A, P, R an F. 
 

In Table 5, we tested the majority voting 

according to the weightings (14) and (15), accounting 

for individual classifier performance on the validation 

set. 

Table 4: Classifier model performance comparison. 

 

The result shown in Table 5 indicates that a 

standard majority voting scheme outperforms the 

weighted majority classifier regardless of the 

weighing ((14) or (15)) used. To explain the result, 

Table 6 exhibits the accuracy of individual classifiers 

on spam and ham class category (the global classifier 

accuracy being the average of the two accuracies). 



 

Table 5: Comparison of weighted majority classifiers. 

 

Table 6: Confidence table: weight for each class is given 

based on f1-score of the class of each classifier. LC: 

confidence value on legitimate emails, SC: confidence 

value on spam emails. 

 F1-score Confidence 

 H S HC SC 

SVM 0.975 0.944 0.337 0.341 

MNB 0.963 0.916 0.333 0.331 

DT 0.953 0.902 0.329 0.326 

Table 6 clearly indicates that SVM outperforms other 

classifiers in terms of classification accuracy on the 

validation set, which, in turn, makes the result of the 

weighted classifiers very much biased by the outcome of 

SVM, and, therefore, fails to capture the diversity among 

the different classifiers. 

5.4 Use of Subcategorization 

The SpamAssassin public corpus contains 250 emails 

labelled as "hard-ham". For the hard-ham emails, the 

content resembles a spam email. This makes it 

difficult for a model to make the classification 

decision. Indeed, all of our models struggled with 

classifying hard-ham: including the hard-ham emails 

in a test set pulled down the accuracy of classifies up 

to 11% (Table 4). 

To tackle this, we defined hard-ham as an 

independent class apart from the legitimate and ham 

emails. Accordingly, we trained the individual 

classifiers to classify all three classes. The result 

exhibited in Table 7 shows a substantial improvement 

in accuracy of around 0.991 (SVM) and 0.988 

(SVM+NB+DTC) in comparison to the data present 

in Table 5. 

 

 

 

 

Table 7: Classification performance of models trained and 

tested on the multi-class base. 

 

This result raises further research questions for the 

use of subcategorization in order to enhance the 

classification result. For example, given a binary 

classification problem that categorizes classes c1 and 

c2, if elements of class c1 can further be split into c3 

and c4 classes, how does the classification of c2, c3, 

c4 enhance or degrade the initial binary classification 

problem. Without speculating on the result, the 

problem is ultimately linked to the nature of features 

and the quality of the training set, especially with 

respect to the subcategory dataset. This constitutes a 

part of our future investigation in this context, which 

lies down promising theoretical foundation. Table 8 

summarizes the performance of the binary and multi-

class classification. 

The performance level achieved competes with 

state of the art results obtained using the same corpus.  

For instance, Chuan, et al., (2005) reported a spam 

precision and a spam recall of 98.97 and 93.58 

respectively. A lower classification performance is 

also reported in Bratko et al., (2006). 

Table 8: Comparison of model performance, measured by 

different metrics. 

 NB ANN-BP ANN-LVQ SVM+NB+
DTC (Multi 

class) 

SVM+NB+DT
C (Binary 

class) 

Spam 
precision 

97.63 98.42 98.97 98 99.50  

Spam 

recall 

86.48 91.26 93.58 98 99.01  

6 CONCLUSION 

This paper addressed the usefulness of majority-

voting based classification strategy for spam 

identification with specific focus to SpamAssassin 

corpus combining machine learning and natural 

language processing based techniques. Three most 

commonly employed classifiers; namely, Support 

vector machine, Naïves Bayes and Decision Tree 

have been implemented and tested with textual 

features. The result shows that standard majority 

voting strategy can increases the performance of 

individual classifiers in terms of accuracy, precision, 

recall metrics. Nevertheless, the use of weighted 



 

majority classifier according to accuracy of 

individual classifiers on validating set fails to display 

the expected improvement. On the other hand, the 

study also reveals the importance of exploring the 

subcategorization that exists in the original dataset, 

where substantial improvement has been noticed, 

which brings the achieved accuracy marginally 

outperforming many of the state of the art results 

employing the same dataset. This also opens 

interesting perspective work in order to explore the 

theoretical foundation of such mechanism. 
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