Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse
rectifier neural networks. In Aistats, volume 15, page
275.
Hearst, M. A. (1997). Texttiling: Segmenting text into
multi-paragraph subtopic passages. Computational
linguistics, 23(1):33–64.
Kleinberg, J. M. (1999). Authoritative sources in a hy-
perlinked environment. Journal of the ACM (JACM),
46(5):604–632.
Kusner, M. J., Sun, Y., Kolkin, N. I., and Weinberger,
K. Q. (2015). From word embeddings to document
distances. In Proceedings of the 32nd International
Conference on Machine Learning (ICML 2015), pages
957–966.
Lin, H. and Bilmes, J. A. (2011). A class of submodular
functions for document summarization. In Lin, D.,
Matsumoto, Y., and Mihalcea, R., editors, ACL, pages
510–520. The Association for Computer Linguistics.
Louis, A. and Nenkova, A. (2009). Automatically evalu-
ating content selection in summarization without hu-
man models. In Proceedings of the 2009 Conference
on Empirical Methods in Natural Language Process-
ing: Volume 1 - Volume 1, EMNLP ’09, pages 306–
314, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.
Matsuo, Y. and Ishizuka, M. (2003). Keyword extraction
from a single document using word co-occurrence sta-
tistical information. In Proceedings of the Sixteenth
International Florida Artificial Intelligence Research
Society Conference, pages 392–396. AAAI Press.
Mihalcea, R. and Tarau, P. (2004). Textrank: Bringing or-
der into texts. In Proceedings of EMNLP-04 and the
2004 Conference on Empirical Methods in Natural
Language Processing.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013b). Distributed representations of words
and phrases and their compositionality. In Advances in
neural information processing systems, pages 3111–
3119.
MIT (2014). Textrank implementation in python.
MIT (2015). A python implementation of the rapid auto-
matic keyword extraction.
Nallapati, R., Zhou, B., dos Santos, C. N., Glehre, ., and Xi-
ang, B. (2016). Abstractive text summarization using
sequence-to-sequence rnns and beyond. In CoNLL,
pages 280–290. ACL.
Parveen, D., Mesgar, M., and Strube, M. (2016). Gener-
ating coherent summaries of scientific articles using
coherence patterns. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 772–783.
Parveen, D., Ramsl, H.-M., and Strube, M. (2015). Topical
coherence for graph-based extractive summarization.
In Mrquez, L., Callison-Burch, C., Su, J., Pighin, D.,
and Marton, Y., editors, EMNLP, pages 1949–1954.
The Association for Computational Linguistics.
Parveen, D. and Strube, M. (2015). Integrating importance,
non-redundancy and coherence in graph-based extrac-
tive summarization. In Yang, Q. and Wooldridge, M.,
editors, IJCAI, pages 1298–1304. AAAI Press.
Radev, D. R., Allison, T., Blair-Goldensohn, S., Blitzer, J.,
Celebi, A., Dimitrov, S., Drabek, E., Hakim, A., Lam,
W., Liu, D., et al. (2004). Mead-a platform for multi-
document multilingual text summarization. In LREC.
Rehurek, R. (2017). gensim 2.0.0.
Rose, S., Engel, D., Cramer, N., and Cowley, W. (2010).
Automatic keyword extraction from individual docu-
ments. In Berry, M. W. and Kogan, J., editors, Text
Mining. Applications and Theory, pages 1–20. John
Wiley and Sons, Ltd.
Rush, A. M., Chopra, S., and Weston, J. (2015). A neural at-
tention model for abstractive sentence summarization.
CoRR, abs/1509.00685.
Salton, G. and Buckley, C. (1987). Term weighting ap-
proaches in automatic text retrieval. Technical report,
Cornell University, Ithaca, NY, USA.
Wan, X. (2010). Towards a unified approach to simultane-
ous single-document and multi-document summariza-
tions. In Proceedings of the 23rd international confer-
ence on computational linguistics, pages 1137–1145.
Association for Computational Linguistics.
Wan, X. and Xiao, J. (2010). Exploiting neighborhood
knowledge for single document summarization and
keyphrase extraction. ACM Trans. Inf. Syst., 28(2).
Woodsend, K. and Lapata, M. (2010). Automatic genera-
tion of story highlights. In Proceedings of the 48th
Annual Meeting of the Association for Computational
Linguistics, pages 565–574. Association for Compu-
tational Linguistics.