different social networks and compare their
behaviours and results;
d. Receiver Automation – in the current work
we emphasize what we learned from
“sender” automation; it seems that there is
much opportunity of work to be done in the
complementary “receiver” automation.
6.5 Main Contribution
The main immediate contribution of this work is the
separation principle within the software architecture
of social network automation for practical application
purposes. In the long term, it opens horizons for
newer kinds of applications and a wider vision for
social networks.
REFERENCES
Boshmaf, Y., Muslukhov, I. Beznosov, K. and Ripeanu, M.,
2011. “The Socialbot Network: When Bots Socialize
for Fame and Money”, in Proc. ACSAC’11 27
th
Annual
Computer Security Applications Conf. pp. 93-102.
DOI: 10.1145/2076732.2076746
Chu, Z., Gianvecchio, S., Wang, H. and Jajodia, S., 2010
“Who is Tweeting on Twitter: Human, Bot or
Cyborg?”, in Proc. ACSAC’10, 26
th
Annual Computer
Security Applications Conf. pp. 21-30. DOI:
10.1145/1920261.1920265
Exman, I.. 2009. “Interestingness – A Unifying Paradigm –
Bipolar Function Composition”, in Proc. KDIR Int.
Conf. on Knowledge Discovery and Information
Retrieval, pp. 196-201, DOI: https://doi.org/10.5220/
0002308401960201
Exman, I. and Pinto, M., 2010. “Lead Discovery in the
Web”, in Proc. KDIR Int. Conf. on Knowledge
Discovery and Information Retrieval, pp. 471-474,
DOI: https://doi.org/10.5220/0003098304710474
Exman, I., Alfassi, N. and Cohen, S., 2012. “Semantics of
Social Network Frequencies for Turing Test
Immunity”, in Proc. SKY’2012 Int. Workshop on
Software Knowledge, pp. 79-84. DOI: 10.5220/
0004181600790084
Exman, I., Amar, G. and Shaltiel, R., 2012. “The
Interestingness Tool for Search in the Web”, in Proc.
SKY’2012 Int. Workshop on Software Knowledge, pp.
54-63. DOI: 10.5220/0004178900540063
Ferrara, E., Varol, O., Davis, C., Menczer, F. and Flammini,
A., 2016. “The rise of social bots”, Comm. ACM, Vol.
59, pp. 96-104. DOI: 10.1145/2818717
Gentry, L. and Calantone, R., 2002. “A comparison of three
models to explain shop-bot use on the web”,
Psychology and Marketing, Vol. 19, pp. 945-956. DOI:
https://doi.org/10.1002/mar.10045
Gianvecchio, S., Xie, M., Wu, Z. and Wang, H., 2008.
“Measurement and classification of humans and bots in
internet chat”, In Proc. 17
th
USENIX Security
Symposium, San Jose, CA.
Gilani, Z., Farahbakhsh, R., Tyson, G., Wang, L. and
Crowcroft, J., 2017. “An in-depth characterization of
Bots and Humans on Twitter”, https://arxiv.org/pdf/
1704.01508.pdf
Klosgen, W. and Zytkow, J.M. (eds.), 2002. Handbook of
Data Mining and Knowledge Discovery, Oxford
University Press, Oxford, UK.
McGarry, K., 2005. “A survey of interestingness measures
for knowledge discovery”, Knowledge Engineering
Review J., 20 (1), 39-61. DOI: https://doi.org/10.1017
/S0269888905000408
Mowbray, M., 2014. “Automated Twitter Accounts”,
Chapter 14 in ref. (Weller et al., 2014), pp. 183-194.
Padmanabhan, B. and Tuzhilin, A., 1999. “Unexpectedness
as a measure of interestingness in knowledge
discovery”, Decision Support Sys., Vol. 27, (3).
Piatetsky-Shapiro, G. and Matheus, C.J., 1994. “The
Interestingness of Deviations”, KDD-94, AAAI-94
Knowledge Discovery in Databases Workshop.
Tuzhilin, A., 2002. “Usefulness, Novelty, and Integration
of Interestingness Measures”, chapter 19.2.2 in
reference (Klosgen and Zytkow, 2002), pp. 496-508.
Weller, K., Bruns, A., Burgess, J., Mahrt, M. and
Puschmann, C. (eds.), 2014. Twitter and Society, Peter
Lang Publishing, New York, NY, USA.