further improve the performance of feature selection
with HS.
ACKNOWLEDGEMENT
The authors would like to thank the editors and
reviewers for their valuable comments. We also
would like to thank Universiti Teknologi Malaysia
(UTM) for providing Research University Grant
(GUP) – Tier 1, Grant no: Q1.J130000.2528.18H53.
Thank you to Ministry of Higher Education (MOHE)
Malaysia and UTM for providing SLAB and Zamalah
scholarship.
REFERENCES
Abualigah, L. M., Khader, A. T., & Al-Betar, M. A. (2016).
Unsupervised feature selection technique based on
harmony search algorithm for improving the text
clustering. 2016 7th International Conference on
Computer Science and Information Technology (CSIT),
1–6. https://doi.org/10.1109/CSIT.2016.7549456
César, C., Ramos, O., Souza, A. N. De, Falcão, A. X., &
Papa, J. P. (2012). New Insights on Nontechnical
Losses Characterization Through Evolutionary-Based
Feature Selection, 27(1), 140–146.
Chen, G., Zhang, D., Zhu, W., Tao, Q., Zhang, C., & Ruan,
J. (2012). On Optimal Feature Selection Using
Harmony Search for Image Steganalysis. 2012 8th
International Conference on Natural Computation,
(Icnc), 1074–1078.
https://doi.org/10.1109/ICNC.2012.6234730
Das, S., Singh, P. K., Bhowmik, S., Sarkar, R., & Nasipuri,
M. (2016). A Harmony Search Based Wrapper Feature
Selection Method for Holistic Bangla Word
Recognition. Procedia Computer Science, 89, 395–403.
https://doi.org/10.1016/j.procs.2016.06.087
Diao, R., & Shen, Q. (2011). Fuzzy-rough classifier
ensemble selection. IEEE International Conference on
Fuzzy Systems, 1516–1522.
https://doi.org/10.1109/FUZZY.2011.6007400
Diao, R., & Shen, Q. (2012). Feature selection with
harmony search. IEEE Transactions on Systems, Man,
and Cybernetics. Part B, Cybernetics : A Publication of
the IEEE Systems, Man, and Cybernetics Society, 42(6),
1509–23.
https://doi.org/10.1109/TSMCB.2012.2193613
Diao, R., & Shen, Q. (2015). Nature inspired feature
selection meta-heuristics. Artificial Intelligence
Review, 44(3), 311–340.
https://doi.org/10.1007/s10462-015-9428-8
Fister, I. Jr., Yang, X-S., Fister, I., Brest, J., Fister, D.,
(2013) A Brief Review of Nature Inspired Algorithms
for Optimization. Elektrotehniski Vestnik 80(3):1–7,
2013 (English Ed.).
Geem, Z.W., Kim, J. H., Loganathan, G. V.: A new
heuristic optimization algorithm: Harmony search.
Simulation, 76, 60-68 (2001).
Geem, Z.W., Tseng, C., Park, Y.: Harmony search for
generalized orienteering problem: best touring in
China. LNCS, vol. 3412, pp. 741–750. Springer,
Heidelberg (2005)
Han, J., Kamber, M., & Pei, J. (2012). Data Mining:
Concepts and Techniques. San Francisco, CA, itd:
Morgan Kaufmann. https://doi.org/10.1016/B978-0-
12-381479-1.00001-0
Hancer E, Xue B, Zhang M, Karaboga D, Akay B (2017)
Pareto front feature selection based on artificial bee
colony optimization. Inf Sci 422:462–479
Hamid Ghaffari Gotorlar, J. B. Mohammad, Pourmahmood
Aghababa, Masoumeh Samadi Osalu, "Improving
Intrusion Detection Using a Novel Normalization
Method along with the Use of Harmony Search
Algorithm for Feature Selection", 7th International
Conference.
J. Tang, S. Alelyani, H. Liu, “Feature Selection for
Classification: A Review,” Data Classification:
Algorithms and Applications, CRC Press, 2013.
J. C. Ang, A. Mirzal, H. Haron and H. N. A. Hamed,
"Supervised, Unsupervised, and Semi-Supervised
Feature Selection: A Review on Gene Selection,"
in IEEE/ACM Transactions on Computational Biology
and Bioinformatics, vol. 13, no. 5, pp. 971-989,
September 1 2016.
doi: 10.1109/TCBB.2015.2478454
Krishnaveni, V., & Arumugam, G. (2013). Harmony search
based wrapper feature selection method for 1-nearest
neighbour classifier. Proceedings of the 2013
International Conference on Pattern Recognition,
Informatics and Mobile Engineering, PRIME 2013, 24–
29. https://doi.org/10.1109/ICPRIME.2013.6496442
Martens, D., Baesens, B. & Fawcett, T. Mach Learn
(2011) 82: 1. https://doi.org/10.1007/s10994-010-
5216-5
Moradi, P. & Gholampour, M. A hybrid particle swarm
optimization for feature subset selection by
integrating a novel local search strategy. Applied Soft
Computing 43, 117–130 (2016).
Nekkaa, M., & Boughaci, D. (2016). Hybrid Harmony
Search Combined with Stochastic Local Search for
Feature Selection. Neural Processing Letters, 44(1),
199–220. https://doi.org/10.1007/s11063-015-9450-5
Rajamohana, S. P., Umamaheswari, K., & Keerthana, S. V.
(2017). An effective hybrid Cuckoo Search with
Harmony search for review spam detection.
Proceedings of the 3rd IEEE International Conference
on Advances in Electrical and Electronics, Information,
Communication and Bio-Informatics, AEEICB 2017,
524–527.
https://doi.org/10.1109/AEEICB.2017.7972369
Ryu SJ., Kim JH. (2014) An Evolutionary Feature
Selection Algorithm for Classification of Human
Activities. In: Kim JH., Matson E., Myung H., Xu P.,
Karray F. (eds) Robot Intelligence Technology and
Feature Selection with Harmony Search for Classification: A Review
301