Cohen, M. S., Parasuraman, R., and Freeman, J. T. (1998).
Trust in decision aids: A model and its training impli-
cations. In Proc. Command and Control Research and
Technology Symp. Citeseer.
Core, M. G., Lane, H. C., Van Lent, M., Gomboc, D.,
Solomon, S., and Rosenberg, M. (2006). Building
explainable artificial intelligence systems. In AAAI,
pages 1766–1773.
Datta, A., Sen, S., and Zick, Y. (2016). Algorithmic trans-
parency via quantitative input influence: Theory and
experiments with learning systems. In IEEE Symp.
Security and Privacy,, pages 598–617. IEEE.
Dietterich, T. G. and Kong, E. B. (1995). Machine learning
bias, statistical bias, and statistical variance of deci-
sion tree algorithms. Technical report, Dep. of CS.,
Oregon State University.
Dzindolet, M. T., Peterson, S. A., Pomranky, R. A., Pierce,
L. G., and Beck, H. P. (2003). The role of trust
in automation reliance. Int. J. Hum. Comput. Stud.,
58(6):697–718.
Foody, G. M. (2005). Local characterization of thematic
classification accuracy through spatially constrained
confusion matrices. Int. J. Remote Sens., 26(6):1217–
1228.
Giarratano, J. C. and Riley, G. (1998). Expert systems. PWS
Publishing Co.
Harrington, P. (2012). Machine learning in action, vol-
ume 5. Manning Greenwich, CT.
Kingma, D. and Ba, J. (2015). Adam: A method for
stochastic optimization. 3rd Int. Conf. for Learning
Representations.
Langley, P., Meadows, B., Sridharan, M., and Choi, D.
(2017). Explainable Agency for Intelligent Au-
tonomous Systems. In AAAI, pages 4762–4764.
Nair, V. and Hinton, G. E. (2010). Rectified linear units
improve restricted boltzmann machines. In Proc. of
the 27th Int. Conf. on Machine Learning (ICML-10),
pages 807–814.
Nguyen, A., Yosinski, J., and Clune, J. (2015). Deep neural
networks are easily fooled: High confidence predic-
tions for unrecognizable images. In Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition,
pages 427–436.
Norton, S. W. (2013). An explanation mechanism for
bayesian inferencing systems. In Proc. of the 2nd
Conf. on Uncertainty in Artificial Intelligence.
Park, N.-W., Kyriakidis, P. C., and Hong, S.-Y. (2016). Spa-
tial estimation of classification accuracy using indi-
cator kriging with an image-derived ambiguity index.
Remote Sensing, 8(4):320.
Platt, J. et al. (1999). Probabilistic outputs for support
vector machines and comparisons to regularized like-
lihood methods. Adv. in large margin classifiers,
10(3):61–74.
Raaijmakers, S., Sappelli, M., and Kraaij, W. (2017). Inves-
tigating the interpretability of hidden layers in deep
text mining. In Proc. of SEMANTiCS.
Ribeiro, M. T., Singh, S., and Guestrin, C. (2016a). Nothing
Else Matters: Model-Agnostic Explanations By Iden-
tifying Prediction Invariance.
Ribeiro, M. T., Singh, S., and Guestrin, C. (2016b). Why
should i trust you?: Explaining the predictions of
any classifier. In Proc. of the 22nd ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining,
pages 1135–1144. ACM. arXiv: 1602.04938.
Rippa, S. (1999). An algorithm for selecting a good value
for the parameter c in radial basis function interpola-
tion. Adv. Comput. Math., 11(2):193–210.
Saelid, S., Jenssen, N., and Balchen, J. (1983). Design
and analysis of a dynamic positioning system based
on kalman filtering and optimal control. IEEE Trans.
Autom. Control, 28(3):331–339.
Schaefer, K. E., Straub, E. R., Chen, J. Y., Putney, J., and
Evans, A. W. (2017). Communicating Intent to De-
velop Shared Situation Awareness and Engender Trust
in Human-Agent Teams. Cognit. Syst. Res.
Sch
¨
olkopf, B., Sung, K.-K., Burges, C. J., Girosi, F.,
Niyogi, P., Poggio, T., and Vapnik, V. (1997). Com-
paring support vector machines with gaussian kernels
to radial basis function classifiers. IEEE Trans. Signal
Process., 45(11):2758–2765.
Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M.,
Parikh, D., and Batra, D. (2016). Grad-cam: Why
did you say that? visual explanations from deep net-
works via gradient-based localization. arXiv preprint
arXiv:1610.02391.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou,
I., Panneershelvam, V., Lanctot, M., et al. (2016).
Mastering the game of go with deep neural networks
and tree search. Nature, 529(7587):484–489.
Swartout, W., Paris, C., and Moore, J. (1991). Explanations
in knowledge systems: Design for explainable expert
systems. IEEE Expert., 6(3):58–64.
van Diggelen, J., van den Broek, H., Schraagen, J. M., and
van der Waa, J. (2017). An intelligent operator support
system for dynamic positioning. In Int. Conf. on Ap-
plied Human Factors and Ergonomics, pages 48–59.
Springer.
Vidovic, M. M.-C., Grnitz, N., Mller, K.-R., and Kloft, M.
(2016). Feature Importance Measure for Non-linear
Learning Algorithms. arXiv:1611.07567 [cs, stat].
arXiv: 1611.07567.
Wettschereck, D., Aha, D. W., and Mohri, T. (1997). A
review and empirical evaluation of feature weighting
methods for a class of lazy learning algorithms. In
Lazy learning, pages 273–314. Springer.
ICM: An Intuitive Model Independent and Accurate Certainty Measure for Machine Learning
321