0 0.01 0.02 0.03 0.04
10
−1
10
0
10
1
10
2
PDF
ICXT power of
polarizations x+y
Theoretical
Simulated
Figure 6: PDF of the total ICXT power of the polarization
directions, in logarithmic scale, considering a mean linear
birefringence of 2 ×10
−7
, ζ = 1, R
b
= 0.2 m, f
T
= 0.1
turns/m. The curves obtained through numerical simulation
with the CLMT and the corresponding theoretical one are
shown.
merical simulation. The numerical simulator based on
the CLMT model allowed to conclude that, for per-
fectly homogeneous MCFs, the mean ICXT power
distribution between the polarization directions is
similar, despite the power distribution at the MCF in-
put, for a mean linear birefringence parameter ranging
from 10
−7
(low birefringence) to 10
−4
(high birefrin-
gence), and for different MCF bending radii. It was
also concluded that the total mean ICXT power es-
timates obtained with the CLMT and DP-DCM are
very similar. Additionally, the PDFs of the ICXT
power of the polarization directions obtained with the
CLMT were shown to be chi-squared distributions
with two degrees of freedom, and the PDF of the sum
of the ICXT power of the polarizations was shown
to be a chi-squared distribution with four degrees
of freedom, showing that Hayashi’s results (Hayashi
et al., 2012) are valid for different power distributions
between the polarization directions at the MCF input.
ACKNOWLEDGEMENTS
This work was supported by Fundac¸
˜
ao para a
Ci
ˆ
encia e Tecnologia (FCT), Portugal, under the
project AMEN-UID/EEA/50008/2013 of Instituto de
Telecomunicac¸
˜
oes, and the FCT researcher contract
IF/01225/2015/CP1310/CT0001.
REFERENCES
Agrawal, G. (2001). Nonlinear Fiber Optics. Academic
Press, 3rd edition.
Cartaxo, A. V. T. and Alves, T. M. F. (2017). Discrete
changes model of inter-core crosstalk of real homoge-
neous multi-core fibers. Journal of Lightwave Tech-
nology, 35(12):2398–2408.
Cartaxo, A. V. T., Lu
´
ıs, R. S., Puttnam, B. J., Hayashi, T.,
Awaji, Y., and Wada, N. (2016). Dispersion impact
on the crosstalk amplitude response of homogeneous
multi-core fibers. IEEE Photonics Technology Letters,
28(17):1858–1861.
Eriksson, T. A., Lu
´
ıs, R. S., Puttnam, B. J., Mendinueta,
J. M. D., Andrekson, P. A., Karlsson, M., Awaji, Y.,
Wada, N., and Agrell, E. (2015). Single parity check-
coded 16qam over spatial superchannels in multicore
fiber transmission. Optics Express, 23(11):14569–
14582.
Feuer, M. D., Nelson, L. E., Zhou, X., Woodward, S. L.,
Isaac, R., Zhu, B., Taunay, T. F., Fishteyn, M., Fini,
J. M., and Yan, M. F. (2012). Joint digital signal
processing receivers for spatial superchannels. IEEE
Photonics Technology Letters, 24(21):1957–1960.
Hayashi, T., Taru, T., Shimakawa, O., Sasaki, T., and
Sasaoka, E. (2011). Design and fabrication of ultra-
low crosstalk and low-loss multi-core fiber. Optics
Express, 19(17):16576–16592.
Hayashi, T., Taru, T., Shimakawa, O., Sasaki, T., and
Sasaoka, E. (2012). Characterization of crosstalk in
ultra-low-crosstalk multi-core fiber. Journal of Light-
wave Technology, 30(4):583–589.
Lee, Y., Tanaka, K., Nomoto, E., Arimoto, H., and Sug-
awara, T. (2014). Multi-core fiber technology for
optical-access and short-range links. In 2014 12th
International Conference on Optical Internet 2014
(COIN), pages 1–2.
Lu
´
ıs, R. S., Puttnam, B. J., Cartaxo, A. V. T., Klaus, W.,
Mendinueta, J. M. D., Awaji, Y., Wada, N., Nakan-
ishi, T., Hayashi, T., and Sasaki, T. (2016). Time and
modulation frequency dependence of crosstalk in ho-
mogeneous multi-core fibers. Journal of Lightwave
Technology, 34(2):441–447.
Macho, A., Garc
´
ıa-Meca, C., Fraile-Pel
´
aez, F. J., Morant,
M., and Llorente, R. (2016). Birefringence effects in
multi-core fiber: coupled local-mode theory. Optics
Express, 24(19):21415–21434.
Puttnam, B. J., Eriksson, T. A., Mendinueta, J.-M. D., Lu
´
ıs,
R. S., Awaji, Y., Wada, N., Karlsson, M., and Agrell,
E. (2014). Modulation formats for multi-core fiber
transmission. Optics Express, 22(26):32457–32469.
Qian, D., Ip, E., Huang, M.-F., jun Li, M., Dogariu, A.,
Zhang, S., Shao, Y., Huang, Y.-K., Zhang, Y., Cheng,
X., Tian, Y., Ji, P., Collier, A., Geng, Y., Linares, J.,
Montero, C., Moreno, V., Prieto, X., and Wang, T.
(2012). 1.05pb/s transmission with 109b/s/hz spectral
efficiency using hybrid single- and few-mode cores. In
Frontiers in Optics 2012/Laser Science XXVIII, page
FW6C.3. OSA.
On the Probability Density Function of Inter-core Crosstalk Power in Birefringent Homogeneous Multi-core Fibers
41