Chen, H., Qi, X., Yu, L., Dou, Q., Qin, J., and Heng, P.-
A. (2017). DCAN: Deep contour-aware networks for
object instance segmentation from histology images.
In Medical Image Analysis, volume 36, pages 135–
146.
Dong, F., Irshad, H., Oh, E. Y., Lerwill, M. F., Brach-
tel, E. F., Jones, N. C., Knoblauch, N. W., Montaser-
Kouhsari, L., Johnson, N. B., Rao, L. K. F., Faulkner-
Jones, B., Wilbur, D. C., Schnitt, S. J., and Beck, A. H.
(2014). Computational pathology to discriminate be-
nign from malignant intraductal proliferations of the
breast. PLoS ONE, 9(12):e114885.
Doyle, S., Feldman, M., Tomaszewski, J., and Madabhushi,
A. (2012). A Boosted Bayesian Multiresolution Clas-
sifier for Prostate Cancer Detection From Digitized
Needle Biopsies. IEEE Transactions on Biomedical
Engineering, 59(5):1205–1218.
Elmore, J. G., Longton, G. M., Carney, P. A., Geller, B. M.,
Onega, T., Tosteson, A. N. A., Nelson, H. D., Pepe,
M. S., Allison, K. H., Schnitt, S. J., O’Malley, F. P.,
and Weaver, D. L. (2015). Diagnostic Concordance
Among Pathologists Interpreting Breast Biopsy Spec-
imens. JAMA, 313(11):1122.
Fakhry, A., Zeng, T., and Ji, S. (2017). Residual Deconvolu-
tional Networks for Brain Electron Microscopy Image
Segmentation. IEEE Transactions on Medical Imag-
ing, 36(2):447–456.
He, D. C. and Wang, L. (1990). Texture unit, texture spec-
trum, and texture analysis. IEEE Transactions on
Geoscience and Remote Sensing, 28(4):509–512.
Hou, L., Samaras, D., Kurc, T. M., Gao, Y., Davis, J. E., and
Saltz, J. H. (2016). Patch-based convolutional neural
network for whole slide tissue image classification. In
CVPR.
Kothari, S., Phan, J. H., Young, A. N., and Wang, M. D.
(2011). Histological Image Feature Mining Reveals
Emergent Diagnostic Properties for Renal Cancer. In
2011 IEEE International Conference on Bioinformat-
ics and Biomedicine, pages 422–425.
Mehta, S., Mercan, E., Bartlett, J., Weaver, D., Elmore, J.,
and Shapiro, L. (2017). Learning to Segment Breast
Biopsy Whole Slide Images. ArXiv e-prints.
Oster, N. V., Carney, P. A., Allison, K. H., Weaver, D. L.,
Reisch, L. M., Longton, G., Onega, T., Pepe, M.,
Geller, B. M., Nelson, H. D., Ross, T. R., Tosteson, A.
N. A., and Elmore, J. G. (2013). Development of a di-
agnostic test set to assess agreement in breast pathol-
ogy: practical application of the Guidelines for Re-
porting Reliability and Agreement Studies (GRRAS).
BMC Women’s Health, 13(1):3.
Park, H. L., Chang, J., Lal, G., Lal, K., Ziogas, A., and
Anton-Culver, H. (2017). Trends in treatment pat-
terns and clinical outcomes in young women diag-
nosed with ductal carcinoma in situ. Clinical Breast
Cancer.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net:
Convolutional Networks for Biomedical Image Seg-
mentation.
Ruifrok, A. C. and Johnston, D. A. (2001). Quantifica-
tion of histochemical staining by color deconvolution.
Analytical and Quantitative Cytology and Histology,
23(4):291–299.
Sertel, O., Kong, J., Shimada, H., Catalyurek, U., Saltz,
J. H., and Gurcan, M. N. (2008). Computer-aided
prognosis of neuroblastoma: classification of stromal
development on whole-slide images. Pattern Recog-
nition, 6915(6):69150P.
Tabesh, A., Teverovskiy, M., Pang, H.-Y., Kumar, V. P., Ver-
bel, D., Kotsianti, A., and Saidi, O. (2007). Multifea-
ture Prostate Cancer Diagnosis and Gleason Grading
of Histological Images. IEEE Transactions on Medi-
cal Imaging, 26(10):1366–1378.
ICPRAM 2018 - 7th International Conference on Pattern Recognition Applications and Methods
68