CA172343, R01 CA140560 and RO1 CA200690.
The content is solely the responsibility of the authors
and does not necessarily represent the views of the
National Cancer Institute or the National Institutes
of Health. We thank Ventana Medical Systems, Inc.
(Tucson, AZ, USA), a member of the Roche Group,
for the use of iScan Coreo Au™ whole slide imaging
system, and HD View SL for the source code used to
build our digital viewer. For a full description o f HD
View SL, please see http://hdviewsl.codeplex.com/.
REFERENCES
Baak, J. P. A., Gudlaugsson, E., Skaland, I., Guo, L. H. R.,
Klos, J., Lende, T., Soiland, H., Janssen, E. A. M., and
zur Hausen, A. (2009). Proliferation is the strongest
prognosticator in node-negative breast cancer: Sig-
nificance, error sources, alternatives, and comparison
with molecular prognostic markers. Breast Cancer
Res Treat, 115:241–254.
Chen, H., Dou, Q., Wang, X., Qin, J., and Heng, P. A.
(2016). Mitosis detection in breast cancer histology
images via deep cascaded networks. Proceedings of
the Thirtieth AAAI Conference on Artificial Intelli-
gence. AAAI Press, pages 1160–1166.
Ciresan, D., Alessandro, G., Gambardella, L. M., and
Schmidhuber, J. (2013). Mitosis detection in breast
cancer histology images with deep neural networks.
Medical Image Computing and Computer-Assisted In-
tervention (MICCAI) 2013, pages 411–418.
Ciresan, D., Meier, U., and Schmidhuber, J. (2012). Multi-
column deep neural networks for image classification.
In Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference, pages 3642–3649.
Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2016).
Region-based convolutional networks for accurate ob-
ject detection and segmentation. IEEE transactions on
pattern analysis and machine intelligence, 38(1):142–
158.
Irshad, H., Roux, L., and Racoceanu, D. (2013). Multi-
channels statistical and morphological features based
mitosis detection in breast cancer histopathology. In
Engineering in Medicine and Biology Society 35th An-
nual International Conference. IEEE.
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,
Girshick, R., Guadarrama, S., and Darrell, T. (2014).
Caffe: Convolutional architecture for fast feature em-
bedding. Proceedings of the 22nd ACM international
conference on Multimedia.
Malon, C., Brachtel, E., Cosatto, E., Graf, H. P., Kurata,
A., Kuroda, M., Meyer, J. S., Saito, A., Wu, S., and
Y, Y. Y. (2012). Mitotic figure recognition: agreement
among pathologists and computerized detector. Anal
Cell Pathology, 35(2):97–100.
Medri, L., Volpi, A., Nanni, O., Vecci, A. M., Mangia, A.,
Schittulli, F., Padovani, F., Giunchi, D. C., Vito, A.,
Amadori, D., Paradiso, A., and Silvestrini, R. (2003).
Prognostic relevance of mitotic activity in patients
with node-negative breast cancer. Modern Pathology,
16(11):1067–1075.
Meyer, J. S., Alvarez, C., Milikowski, C., Olson, N., Russo,
I., Russo, J., Glass, A., Zehnbauer, B. A., Lister,
K., and Parwaresch, R. (2005). Breast carcinoma
malignancy grading by bloom-richardson system vs
proliferation index: Reproducibility of grade and ad-
vantages of proliferation index. Modern Pathology,
18:1067–1078.
Peng, H., Long, F., and Ding, C. (2005). Feature se-
lection based on mutual information criteria of max-
dependency, max-relevance, and min-redundancy.
IEEE Transactions on pattern analysis and machine
intelligence, 27(8):1226–1238.
Reinhard, E., Adhikhmin, M., Gooch, B., and Shirley, P.
(2001). Color transfer between images. IEEE Com-
puter graphics and applications, 21(5):34–41.
Robbins, P., Pinder, S., de Klerk, N., Dawkins, H., Harvey,
J., Sterrett, G., Ellis, I., and Elston, C. (1995). Histo-
logical grading of breast carcinomas: A study of inter-
observer agreement. Human Pathology, 26(8):873–
879.
Roullier, V., Lzoray, O., Ta, V. T., and Elmoataz, A. (2010).
Mitosis extraction in breast-cancer histopathological
whole slide images. In Advances in Visual Computing,
pages 539–548. Springer Berlin.
Roux, L. (2014). Mitosis atypia 14 grand challenge.
https://mitos-atypia-14.grand-challenge.org/.
Roux, L., Racoceanu, D., Lomnie, N., Kulikova, M., Irshad,
H., Klossa, J., Capron, F., Genestie, C., Naour, G. L.,
and Gurcan, M. N. (2013). Mitosis detection in breast
cancer histological images: An ICPR 2012 contest.
Journal of pathology informatics, 4(8).
Sertel, O., Catalyurek, U. V., Shimada, H., and Gurcan,
M. N. (2009). Computer-aided prognosis of neurob-
lastoma: Detection of mitosis and karyorrhexis cells
in digitized histological images. In Engineering in
Medicine and Biology Society Annual International
Conference, pages 1433–1436. IEEE.
Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P.,
and Moreno-Noguer, F. (2005). Discriminative learn-
ing of deep convolutional feature point descriptors. In
Proceedings of the IEEE International Conference on
Computer Vision, pages 118–126.
Sommer, C., Straehle, C., Koethe, U., and Hamprecht, F. A.
(2011). Ilastik: Interactive learning and segmentation
toolkit. In Biomedical Imaging: From Nano to Macro.
2011 IEEE International Symposium on., pages 230–
233.
Veta, M., Diest, V., Willems, P. J., Wang, S. M., Madab-
hushi, H., Cruz-Roa, A., Gonzalez, A., Larsen, F.,
Vestergaard, A. B., Dahl, J. S., and Cirean, D. C.
(2015). Assessment of algorithms for mitosis detec-
tion in breast cancer histopathology images. Medical
image analysis, 20(1):237–248.
Wang, H., Cruz-Roa, A., Basavanhally, A., Gilmore, H.,
Shih, N., Feldman, M., Tomaszewski, J., Gonzalez,
F., and Madabhushi, A. (2014). Cascaded ensemble
of convolutional neural networks and handcrafted fea-
tures for mitosis detection. SPIE Medical Imaging,
90410B.
ICPRAM 2018 - 7th International Conference on Pattern Recognition Applications and Methods
76