REFERENCES
Albert, M., Toledo, S., Shapiro, M., and Kording, K. (2012).
Using mobile phones for activity recognition in par-
kinsons patients. Frontiers in neurology, 3:1–7.
Anguita, D. , Ghio, A., Oneto, L., Parra, X., and Reyes-
Ortiz, J. L. (2013). A public domain dataset for human
activity recognition using smartphones. In ESANN.
Ba˜nos, O., Damas, M., Pomares, H., Rojas, I., T´oth, M. A.,
and Amft, O. (2012). A benchmark dataset to eva-
luate sensor displacement in activity recognition. In
Proceedings of the 2012 ACM C onference on Ubiqui-
tous Computing, pages 1026–1035.
Banos, O., Villalonga, C., Garcia, R., Saez, A., Damas, M.,
Holgado-Terriza, J. A., Lee, S., Pomares, H., and Ro-
jas, I. (2015). Design, implementation and validation
of a novel open framework for agile development of
mobile health applications. Biomedical engineering
online, 14(2):S6.
Barshan, B. and Y¨uksek, M. C. ( 2014). Recognizing daily
and sports activities in two open source machine lear-
ning environments using body-worn sensor units. T he
Computer Journal, 57(11):1649–1667.
Biomimetics and Intelligent Systems G r oup (2017).
http://www.oulu.fi/bisg/node/40364. Accessed: 2017-
10-24.
Bishop, C. M. (2006). Pattern Recognition and Machine Le-
arning (Information Science and Statistics). Springer-
Verlag New York, Inc., Secaucus, NJ, USA.
Bruno, B., Mastrogiovanni, F., Sgorbissa, A., Vernazza, T.,
and Zaccaria, R. (2013). Analysis of human behavior
recognition al gorithms based on acceleration data. In
Robotics and Automation, 2013 IEEE International
Conference on, pages 1602–1607. IEEE.
Casale, P., Pujol, O., and Radeva, P. (2012). Personaliza-
tion and user verification in wearable systems using
biometric walking patterns. Personal and Ubiquitous
Computing, 16(5):563–580.
Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S. T.,
Tr¨oster, G., Mill´an, J. d. R. , and Roggen, D. (2013).
The opportunity challenge: A benchmark database for
on-body sensor-based activity recognition. Pattern
Recognition Letters, 34(15):2033–2042.
Devijver, P. A. and Kittler, J. (1982). Pattern recognition:
A statistical approach. Prentice Hall.
Ermes, M., P¨arkk¨a, J., M¨antyj¨arvi, J., and Korhonen, I.
(2008). Detection of daily activities and sports with
wearable sensors in controlled and uncontrolled con-
ditions. IEEE transactions on information technology
in biomedicine, 12(1):20–26.
Hand, D. J., Mannila, H., and Smyth, P. (2001). Principles
of data mining. MIT Press, Cambridge, MA, USA.
Ichikawa, F., Chipchase, J., and Grignani, R. (2005).
Where’s the phone? a study of mobile phone location
in public spaces. In 2nd Asia Pacific Conference on
Mobile Technology, Applications and Systems, pages
1–8. IET.
Incel, O., Kose, M., and Ersoy, C. (2013). A review and
taxonomy of activity recognition on mobile phones.
BioNanoScience, 3(2):145–171.
Koskim¨aki, H. and Siirtola, P. (2014). Recognizing gym
exercises using acceleration data from wearable sen-
sors. In Computational Intelligence and Data Mining
(CIDM), 2014 IEEE Symposium on, pages 321–328.
IEEE.
Kwapisz, J. R., Weiss, G. M., and Moore, S. A. (2011).
Activity recognition using cell phone accelerometers.
ACM SigKDD Explorations Newsletter, 12(2):74–82.
Lichman, M. (2013). UCI machine learning repository.
http://archive.ics.uci.edu/ml. University of California,
Irvine, School of Information and Computer Sciences.
Lockhart, J. W., Pulickal, T., and Weiss, G. M. (2012).
Applications of mobile activity recognition. In 2012
ACM Conference on Ubiquitous Computing, Ubi-
Comp ’12, pages 1054–1058, New York, NY, USA.
Micucci, D., Mobilio, M., and Napoletano, P. (2017). Uni-
mib shar: a new dataset for human activit y recognition
using acceleration data from smartphones. arXiv pre-
print arXiv:1611.07688v2.
Reiss, A. and Stricker, D. (2012). Introducing a new bench-
marked dataset for activity monitoring. In Wearable
Computers (ISWC), 2012 16th International Sympo-
sium on, pages 108–109. IEEE.
Shoaib, M., Bosch, S., Incel, O. D., Scholten, H., and Ha-
vinga, P. J. (2014). Fusion of smartphone motion
sensors for physical activity recognition. Sensors,
14(6):10146–10176.
Siirtola, P. (2015). Recognizing human activities based on
wearable inertial measurements: methods and appli-
cations. Doctoral dissertation, Department of Com-
puter Science and Engineering, University of Oulu,
(Acta Univ Oul C 524).
Siirtola, P., Koskim¨aki, H., and R¨oning, J. (2016). Personal
models for ehealth-improving user-dependent human
activity recognition models using noise i njection. In
Computational Intelligence (SSCI), 2016 IEEE Sym-
posium Series on, pages 1–7. IEEE.
Siirtola, P. and R¨oning, J. (2012). Recognizing hu-
man activities user-independently on smartphones ba-
sed on accelerometer data. International Journal
of Interactive Multimedia and Artificial Intell igence,
1(5):38–45.
Siirtola, P. and R¨oning, J. (2013). Ready-to-use activity re-
cognition for smartphones. In Computational Intelli-
gence and Data Mining (CIDM), 2013 IEEE Sympo-
sium on, pages 59–64. IEEE.
Stisen, A. , Blunck, H. , Bhattacharya, S. , Prentow, T. S.,
Kjærgaard, M. B., Dey, A., S onne, T., and Jensen,
M. M. (2015). Smart devices are different: Asses-
sing and mitigatingmobile sensing heterogeneities for
activity recognition. In Proceedings of the 13th ACM
Conference on Embedded Networked Sensor Systems,
pages 127–140. ACM.
Ugulino, W., Cardador, D., Vega, K., Velloso, E., Milidi´u,
R., and Fuks, H. (2012). Wearable computing: Acce-
lerometers data classification of body postures and
movements. In Advances in Artificial Intelligence-
SBIA 2012, pages 52–61. Springer.
Zhang, M. and Sawchuk, A. A. (2012). Usc-had: A
daily activity dataset for ubiquitous activity recog-
nition using wearable sensors. I n ACM Internatio-
nal Conference on Ubiquitous C omputing (Ubicomp)
Workshop on Situation, Activity and Goal Awareness
(SAGAware), Pit tsburgh, Pennsylvania, USA.