REFERENCES
Borodin, A. N. and Salminen, P. (1996). Ornstein-
uhlenbeck process. In Borodin, A. N. and Salminen,
P., editors, Handbook of Brownian Motion — Facts
and Formulae, pages 412–448. Birkh
¨
auser Basel,
Basel.
C. Liu and Y. L. Murphey (2014). Power management
for plug-in hybrid electric vehicles using reinforce-
ment learning with trip information. In 2014 IEEE
Transportation Electrification Conference and Expo
(ITEC), pages 1–6.
Chae, H., Kang, C. M., Kim, B., Kim, J., Chung, C. C., and
Choi, J. W. (2017). Autonomous braking system via
deep reinforcement learning. CoRR, abs/1702.02302.
Chasse, A. and Sciarretta, A. (2011). Supervisory control
of hybrid powertrains: An experimental benchmark of
offline optimization and online energy management.
Control Engineering Practice, 19(11):1253–1265.
David Silver, Guy Lever, Nicolas Heess, Thomas Degris,
Daan Wierstra, and Martin Riedmiller (2014). Deter-
ministic policy gradient algorithms. In Tony Jebara
and Eric P. Xing, editors, Proceedings of the 31st In-
ternational Conference on Machine Learning (ICML-
14), pages 387–395. JMLR Workshop and Conference
Proceedings.
Duan Yan, Chen Xi, Houthooft Rein, Schulman John, and
Abbeel Pieter (2016). Benchmarking deep reinforce-
ment learning for continuous control. International
Conference on Machine Learning, 2016:1329–1338.
European Commission (2017). Draft regulation: real-
driving emissions in the euro 6 regulation on emis-
sions from light passenger and commercial vehicles.
Guzzella, L. and Sciarretta, A. (2013). Vehicle propulsion
systems: Introduction to modeling and optimization.
Springer, Heidelberg, 3rd ed. edition.
John Schulman, Sergey Levine, Philipp Moritz,
Michael I. Jordan, and Pieter Abbeel (2015).
Trust region policy optimization. CoRR.
Kirschbaum, F., Back, M., and Hart, M. (2002). Determina-
tion of the fuel-optimal trajectory for a vehicle along a
known route. IFAC Proceedings Volumes, 35(1):235–
239.
Leroy, T., Malaize, J., and Corde, G. (2012). Towards
real-time optimal energy management of hev pow-
ertrains using stochastic dynamic programming. In
2012 IEEE Vehicle Power and Propulsion Conference,
pages 383–388. IEEE.
Liessner, R., Dietermann, A., B
¨
aker, B., and L
¨
upkes, K.
(2017). Generation of replacement vehicle speed cy-
cles based on extensive customer data by means of
markov models and threshold accepting. SAE Inter-
national Journal of Alternative Powertrains, 6(1).
Mirzaei, H. and Givargis, T. (2017). Fine-grained ac-
celeration control for autonomous intersection man-
agement using deep reinforcement learning. CoRR,
abs/1705.10432.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller,
M., Fidjeland, A. K., Ostrovski, G., Petersen, S.,
Beattie, C., Sadik, A., Antonoglou, I., King, H., Ku-
maran, D., Wierstra, D., Legg, S., and Hassabis, D.
(2015). Human-level control through deep reinforce-
ment learning. Nature, 518(7540):529–533.
Onori, S., Serrao, L., and Rizzoni, G. (op. 2016). Hy-
brid electric vehicles: Energy management strategies.
Springer, London.
Patrick Wappler (2016). Applikation von hybridfahrzeu-
gen auf basis k
¨
unstlicher intelligenz. Master’s the-
sis, Technische Universit
¨
at Dresden, Lehrstuhl f
¨
ur
Fahrzeugmechatronik.
Puterman, M. L. (dr. 2010). Markov decision processes:
Discrete stochastic dynamic programming. Wiley Se-
ries in Probability and Statistics. John Wiley & Sons,
Hoboken, [dodr.] edition.
Shixiang Gu, Timothy P. Lillicrap, Ilya Sutskever,
and Sergey Levine (2016). Continuous deep q-
learning with model-based acceleration. CoRR,
abs/1603.00748.
Sutton, R. S. and Barto, A. G. (2012). Introduction to rein-
forcement learning. MIT Press, 2 edition.
Tate, E. D., Grizzle, J. W., and Peng, H. (2008). Shortest
path stochastic control for hybrid electric vehicles. In-
ternational Journal of Robust and Nonlinear Control,
18(14):1409–1429.
Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,
and Daan Wierstra (2015). Continuous control with
deep reinforcement learning. CoRR, abs/1509.02971.
UNECE Transport Division (2005). Vehicle regulations:
Regulation no. 101, revision 2,.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller (2013). Playing atari with deep re-
inforcement learning. In NIPS Deep Learning Work-
shop.
X. Lin, Y. Wang, P. Bogdan, N. Chang, and M. Pedram
(2014). Reinforcement learning based power manage-
ment for hybrid electric vehicles. In 2014 IEEE/ACM
International Conference on Computer-Aided Design
(ICCAD), pages 33–38.
ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence
72