Geetharamani, R. and Balasubramanian, L. (2016). Retinal
blood vessel segmentation employing image process-
ing and data mining techniques for computerized reti-
nal image analysis. Biocybernetics and Biomedical
Engineering, 36(1):102–18.
Giancardo, L., Meriaudeau, F., Karnowski, T., Li, Y., Garg,
S., Tobin, K., and Chaum, E. (2012). Exudate-based
diabetic macular edema detection in fundus images
using publicly available datasets. Medical Image
Analysis, 16(1):216–26.
Guastella, D. and Valenti, C. (2016). Cartoon filter via
adaptive abstraction. Journal of Visual Communica-
tion and Image Representation, 36:149–158.
Gupta, V., Sengar, N., and Dutta, M. K. (2016). Automated
segmentation of blood vasculature from retinal im-
ages. In 2016 2nd International Conference on Com-
munication Control and Intelligent Systems (CCIS),
pages 81–84. IEEE.
Hamad, H., Tegolo, D., and Valenti, C. (2014). Automatic
detection and classification of retinal vascular land-
marks. Image Analysis Stereology, 33(3):189–200.
Kauppi, T., Kalesnykiene, V., Kamarainen, J., Lensu, L.,
Sorri, I., K¨alvi¨ainen, H., and Uusitalo, H. (2012). A
framework for constructing benchmark databases and
protocols for retinopathy in medical image analysis.
In Intelligent Science and Intelligent Data Engineer-
ing, pages 832–843.
Keivani, M. and Pourghassem, H. (2015). A blood vessel
segmentation algorithm in retinal images using mor-
phological and spatial features. International Journal
of Imaging and Robotics, 15(4):12–28.
Khansari, M., ONeill, W., Lim, J., and Shahidi, M. (2017).
Method for quantitative assessment of retinal vessel
tortuosity in optical coherence tomography angiogra-
phy applied to sickle cell retinopathy. Biomedical Op-
tics Express, 8:3796–3806.
Kuri, S. (2015). Automatic diabetic retinopathy detection
using gabor filter with local entropy thresholding. In
Recent Trends in Information Systems, pages 411–5.
IEEE.
Lu, S. and Lim, J. (2011). Automatic optic disc detection
from retinal images by a line operator. IEEE Trans
Biomed Eng, 58(1):88–94.
Lukac, A. and Subasic, M. (2017). Blood vessel seg-
mentation using multiscale hessian and tensor voting.
In 40th International Convention on Information and
Communication Technology, Electronics and Micro-
electronics, pages 1534–1539. IEEE.
McClintic, B., McClintic, J., Bisognano, J., and Block, R.
(2010). The relationship between retinal microvascu-
lar abnormalities and coronary heart disease: a review.
Am J Med, 123(4):1–7.
Mookiah, M., Tan, J., Chua, C., Ng, E., Laude, A., and
Tong, L. (2015). Automated characterization and de-
tection of diabetic retinopathy using texture measures.
J Mech Med Biol, 15(4).
Oloumi, F., Rangayyan, R., Casti, P., and Ells, A. (2015).
Computer-aided diagnosis of plus disease via mea-
surement of vessel thickness in retinal fundus images
of preterm infants. Comput Biol Med, 66:316–29.
Paranjape, S., Ghosh, S., Ray, A., and Chatterjee, J. (2015).
Segmentation of retinal blood vessels through Gabor
features and ANFIS classifier. In International Con-
ference on Industrial Instrumentation and Control,
pages 512–6. IEEE.
Rizvi, S., Cabodi, G., Gusmao, P., and Francini, G. (2016).
Gabor filter based image representation for object
classification. In International Conference on Control,
Decision and Information Technologies, pages 628–
632. IEEE.
Rotaru, F., Bejinariu, S., Luca, R., and Nit¸˘a, C. (2015). Reti-
nal vessel labeling method. In E-Health and Bioengi-
neering Conference, pages 1–4. IEEE.
Salazar-Gonzalez, A., Kaba, D., Li, Y., and Liu, X. (2014).
Segmentation of the blood vessels and optic disk in
retinal images. IEEE Journal of Biomedical and
Health Informatics, 18:1874–1886.
Shensa, M. (1992). The discrete wavelet transform: wed-
ding the `a trous and Mallat algorithms. IEEE Trans
Sig Process, 40(10):2464–82.
Soares, J., Leandro, J., Cesar, R., Jelinek, H., and Cree,
M. (2006). Retinal vessel segmentation using the 2-
d gabor wavelet and supervised classification. IEEE
Trans Med Imag, 25(9):1214–22.
Staal, J., Abramoff, M., Niemeijer, M., Viergever, B., and
van Ginneken, B. (2004). Ridge based vessel segmen-
tation in color images of the retina. IEEE Trans Med
Imag, 23(4):501–9.
Waheed, A., Akram, M., Khalid, S., Waheed, Z., Khan, M.,
and Shaukat, A. (2015). Hybrid features and mediods
classification based robust segmentation of blood ves-
sels. J Med Syst, 39(10).
Wang, Y.-B., Zhu, C.-Z., Yan, Q.-F., and Liu, L.-Q. (2017).
A novel vessel segmentation in fundus images based
on SVM. In International Conference on Information
System and Artificial Intelligence, pages 390–4. IEEE.
Wu, X., Dai, B., and Bu, W. (2016). Optic disc localization
using directional models. IEEE Trans Image Process,
25(9):4433–42.
Youssif, A., Ghalwash, A., and Ghoneim, A. (2008). Optic
disc detection from normalized digital fundus images
by means of a vessels direction matched filter. IEEE
Trans Med Imag, 27(1):11–8.
Zhang, D. and Zhao, Y. (2016). Novel accurate and fast op-
tic disc detection in retinal images with vessel distri-
bution and directional characteristics. IEEE J Biomed
Health Inform, 20(1):333–342.
Zhang, L., Zhang, L., Mou, X., and Zhang, D. (2011).
FSIM: A feature similarity index for image quality as-
sessment. IEEE Trans Image Process, 20(8):2378–86.
Zhanga, L., Fisherb, M., and Wang, W. (2015). Retinal
vessel segmentation using multi-scale textons derived
from keypoints. Comput Med Imaging Graph, 45:47–
56.