Cobb, J. N., DeClerck, G., Greenberg, A., Clark, R., and
McCouch, S. (2013). Next-generation phenotyping:
requirements and strategies for enhancing our under-
standing of genotype–phenotype relationships and its
relevance to crop improvement. Theoretical and Ap-
plied Genetics, 126(4):867–887.
Cointault, F. and Gouton, P. (2007). Texture or colour anal-
ysis in agronomic images for wheat ear counting. In
Proceedings of the 3th international IEEE conference
on Signal-image technologies and internet based sys-
tem.
Cointault, F., Guerin, D., Guillemin, J.-P., and Chopinet, B.
(2008). In-field triticum aestivum ear counting using
colour-textue image analysis. New Zealand Journal of
Crop and Horticltural Science, 1.
Cointault, F., Ludovic, J., Gilles, R., Christian, G., David,
O., Marie-France, D., Nathalie, G., Gillbert, G.,
Olivier, L., and Ambroise, M. (2012). Texture, colour
and frequential proxy-detection image processing for
crop characterization in a context of precision agricul-
ture. Science technology and medicine open access
publisher., 158:213–313.
Geipel, J., Link, J., and Claupein, W. (2014). Combined
spectral and spatial modeling of corn yield based on
aerial images and crop surface models acquired with
an unmanned aircraft system. 6:10335–10355.
Germain, C., Rousseaud, R., and Grenier, G. (1995). Non-
destructive counting of wheat ear with picture analy-
sis. In Image processing and its applications. Pro-
ceeding of the 5th international conference on:.
Guerin, D., Cointault, F., Gee, F., and Guillemin, J.-P.
(2004). Feasibility study of a wheatears counting vi-
sion system. (Accessed: 11th July 2016.
Guijarro, M., Pajares, G., Riomoros, I., Herrera, P., Burgos-
Artizzu, X., and Ribeiro, A. (2011). Automatic seg-
mentation of relevant textures in agricultural images.
Computers and Electronics in Agricultural, 75:75–83.
Jain, A. and Farrokhnia, F. (1991). Unsupervised texture
segmentation using gabor filters. 24(12):1167–1186.
Jolliffe, I. (2002). Principle Component Analysis. Springer-
Verlay Inc., 2 edition.
Kalapala, M. (2014). Estimation of tree count from
satallite imagery through mathematical morphology.
4(1):490–495.
Kataoka, T., Kaneko, T., Okamoto, H., and Hata, S.-I.
(2003). Crop growth estimation system using machine
vision. In Proceedings of IEEE/ASME international
conference on advanced intelligent mechatronics.
Lempitsky, V. and Zisserman, A. (2010). Learning to count
objects in images. In Proceedings of 24th Conference
on Advances in Neural Information Processing Sys-
tems, pages 1324–1332.
Liu, T., Wu, W., Chen, W., Sun, C., Zhu, X., and Guo,
W. (2015). Automated image-processing for count-
ing seedlings in a wheat field. Precision Agriculture,
17(4):392–406.
Lobell, D. B. (2013). The use of satellite data for crop
yield gap analysis. Field Crops Research, 143(Supple-
ment C):56 – 64. Crop Yield Gap Analysis Rationale,
Methods and Applications.
Montalvo, M., Guijarro, M., and Guerrero, J. (2016). Tex-
ture or colour analysis in agronomic images for wheat
ear counting. In Proceedings of the 11th international
IEEE conference on Signal-image technologies and
internet based system.
Pask, A., Pietragalla, J., Mullan, D., and Reynolds, M., edi-
tors (2012). Physiological Breeding II: A Field Guide
to Wheat Phenotyping. CIMMYT.
Pinto, R. S., Reynolds, M. P., Mathews, K. L., McIntyre,
C. L., Olivares-Villegas, J.-J., and Chapman, S. C.
(2010). Heat and drought adaptive qtl in a wheat pop-
ulation designed to minimize confounding agronomic
effects. In Theoretical and Applied Genetics, pages
1001 – 1021.
Rangole, J. and Pandit, A. (2014). Literature review on ob-
ject counting using image processing techniques. In-
ternational Journal of Advanced Research in Electri-
cal, 3(4):8509–8512.
Segui, S., Pujol, O., and Vitria, J. (2015). Learning to count
with deep objects features. In Proceeding of Computer
Vision and Pattern Recognition Workshops IEEE Con-
ference on:7-12 June.
Sonka, M., Hlavac, V., and Boyle, R. (2015). Image pro-
cessing, analysis, and machine vision. Timothy L.
Anderson, USA.
Velastin, S., Yin, J., Davies, A., and Vicencio-Silva, M.
(1994). Automatic measurement of crowd density
and motion using image processing. In Proceeding of
the Seventh international conference on:Road Traffic
Monitoring and Control.
Zhao, M., J. Qin, S. L., Liu, Z., Cao, J., Yao, X., Ye, S.,
and Li, L. (2015). An automatic counting method of
maize ear grain based on image processing. Springer
International Publishing, 452:521–533.
Zhou, J., Reynolds, D., Websdale, D., Le Cornu, T.,
Gonzalez-Navarro, O., Lister, C., Orford, S., Lay-
cock, S., Finlayson, G., Stitt, T., Clark, M. D., Bevan,
M. W., and Griffiths, S. (2017). Cropquant: An au-
tomated and scalable field phenotyping platform for
crop monitoring and trait measurements to facilitate
breeding and digital agriculture. bioRxiv.
Zhu, Y., Cao, Z., Lu, H., Li, Y., and Xiao, Y. (2016). In-field
automatic observation of wheat heading stage using
computer vision. Biosystem Engineering, 143:28–41.
Automatic Counting of Wheat Spikes from Wheat Growth Images
355