Table 1: Example 1 “cuboid in the corner” (n = 30): VJ-style cascades vs optimal cascades found by exhaustive search.
no. K A
resulting cascade
(VJ-style algorithm) N E(n)
optimal cascade
(exhaustive search) E(n) no. of cascades search time [s]
1 2 10
−2
(12,11) 23 13.2884 (7,16) 10.9849 22 0.016
2 2 10
−3
(18,10) 28 18.6085 (8,20) 12.2173 27 0.016
3 3 10
−2
(8,9,7) 24 10.3641 (4,6,14) 8.74884 253 0.094
4 3 10
−3
(12,11,5) 28 13.5038 (4,7,17) 9.29271 351 0.141
5 4 10
−2
(6,6,6,5) 25 8.78596 (3,4,6,10) 7.62453 1540 0.516
6 4 10
−3
(9,9,7,4) 29 11.2031 (3,4,7,15) 8.21372 3276 1.188
Table 2: Example 1 “cuboid in the corner” (n = 30): improved totals of features N
∗
.
no. N N
∗
optimal cascade
(exhaustive search, using N
∗
E(n) no. of cascades search time [s]
3 24 23 (4,6,13) 8.59409 231 0.078
6 29 28 (3,4,7,14) 8.12233 2925 1.016
Table 3: Example 1 “cuboid in the corner” (n = 50): VJ-style cascades vs optimal cascades found by exhaustive search.
no. K A
resulting cascade
(VJ-style algorithm) N E(n)
optimal cascade
(exhaustive search) E(n) no. of cascades search time [s]
1 5 10
−2
(5,5,6,6,7) 29 7.98656 (2,3,4,7,13) 7.08589 20475 7.281
2 5 10
−3
(7,8,9,10,8) 42 9.62653 (2,3,5, 9,23) 7.61736 101270 44.766
3 6 10
−2
(4,4,5,5,6,6) 30 7.38845 (2,2, 3,4, 7,12) 6.72574 118755 44.453
4 6 10
−3
(6,7,8,8,8,6) 43 8.94712 (2,3, 3,5, 9,21) 7.12384 850668 387.328
Table 4: Example 1 “cuboid in the corner” (n = 50): improved totals of features N
∗
.
no. N N
∗
optimal cascade
(exhaustive search, using N
∗
E(n) no. of cascades search time [s]
1 29 27 (2,3,4,6,12) 6.97378 14950 5.125
2 42 41 (2,3,5,9,22) 7.58432 91390 39.281
3 30 27 (2,2,3,4,6,10) 6.59502 65780 23.093
4 43 41 (2,3,3,5,9,19) 7.0788 658008 289.906
Table 5: Resulting cascades found numerically via continuous approximate expectations (4) and (5).
n K A
optimal cascade
(exhaustive search)
resulting cascade
for approximate criterion (4)
(NMinimize[·]) time [s]
resulting cascade
for approximate criterion (5)
(NMinimize[·]) time [s]
30 2 10
−2
(7,16) (7,16) 0.609 (7,16) 0.620
30 2 10
−3
(8,20) (8,20) 0.625 (8,20) 0.625
30 3 10
−2
(4,6,14) (4,6,14) 2.688 (4,6, 14) 2.797
30 3 10
−3
(4,7,17) (4,7,17) 2.750 (4,7, 17) 2.800
30 4 10
−2
(3,4,6,10) (3,4,6,10) 6.484 (3,4,6,10) 6.422
30 4 10
−3
(3,4,7,15) (3,4,7,15) 6.781 (3,4,7,15) 6.703
50 5 10
−2
(2,3,4,7,13) (2,3,4,7,13) 18.953 (2,3, 4,7, 13) 20.001
50 5 10
−3
(2,3,5,9,23) (2,3,5,9,23) 19.313 (2,3, 5,9, 23) 19.578
50 6 10
−2
(2,2,3,4,7,12) (2,2,3,4,7,12) 26.141 (2, 2,3, 4,7,12) 26.875
50 6 10
−3
(2,3,3,5,9,21) (2,3,4,5,9,20) 26.922 (2, 3,4, 5,9,20) 27.297
disposal gets combinatorially distributed among the
(n
1
,. ..,n
K
) counts, (ii) the dependency of false alarm
rates a
k
on n
k
counts is in general unknown, and ob-
viously not continuous.
In this section we present a technique, tailored to
the “cuboid in the corner” example, that allows to find
ICPRAM 2018 - 7th International Conference on Pattern Recognition Applications and Methods
108