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Abstract: For Internet of Things (IoT) devices and cyber-physical systems (CPS), it is required to connect them securely
and reliably to some form of cloud environment or computing entity for control, management and utilisation.
The Internet is a suitable, standardized, and proven means for the connection of IoT devices in various sce-
narios. Connection over the Internet utilises existing protocols, standards, technologies and avoids investment
in new, specialised concepts. Thereby, this connection requires a transparent addressing schema which is
commonly TCP/IP, using domain names and IP addresses. However, in industrial, commercial and private
networks, the addressability and connectability/connectivity is often limited by firewalls, proxies and router
configurations utilising NAT. Thus, the present network configurations hinder the establishment of connec-
tions between IoT devices across different locations. Therefore, the method for connecting IoT devices in a
client-server configuration proposed herein utilises the Tor (previously: The onion router/routing) network for
addressing of and secured communication to IoT and CPS devices. It is an overlay protocol that was designed
to allow for robust and anonymous communication. The benefit of this approach is to enable addressability
and connectivity of IoT devices in firewalled and potentially unknown and changing network environments,
thus allowing for IoT devices to be used reliably behind firewalls as long as outgoing communication is not
blocked.

1 INTRODUCTION

In scenarios where IoT (Internet of Things) systems
are to be deployed, it is essential to address these
devices reliably even if they are located behind cor-
porate or other firewalls. The reliable addressing
across various network scenarios for IoT devices is
the key problem to solve. Furthermore, connectiv-
ity to and of such devices can be problematic due to
restrictive network settings. This work is motivated
by the SePiA.Pro project (Deutsches Forschungszen-
trum für Künstliche Intelligenz et al., ; Pfeil et al.,
2016; Falkenthal et al., 2017), which provides such
a scenario. In this project, industrial machinery is
equipped with sensors to form cyber-physical sys-
tems (CPS) and enhanced with so called smart ser-
vices, i. e., services operating on data generated by
these CPS in a cloud-like manner (Falkenthal et al.,
2016a). A special component in these smart services
is a so called DataHub, which facilitates unified and
secure access to and usage of various data sources and

targets within smart service and industrial environ-
ments. These DataHubs have to be addressable and
stackable within networks and over network bound-
aries for cross and inter-company access. Address-
ing and communication with these CPS devices is fa-
cilitated with the proposed mechanism, relying on a
client-server architecture, operating on the Tor net-
work (McCoy et al., 2008; Jansen et al., 2012). The
solution provided here solves the issue of addressing
and connecting CPS/IoT devices via a client-server
system relying on the Tor network, it is motivated
by a scenario of the SePiA.Pro project and described
through its implementation in code. For an introduc-
tion to the nature and structure of the Tor network,
section 3 is provided. The proposed mechanism is
implemented utilising a BASH (Free Software Foun-
dation, Inc., ) script for the client part, intended to be
executed on a micro computing platform, in this case
a Raspberry Pi 2 (Raspberry Pi Foundation, ). The
server part is implemented as a RESTful (Represen-
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tational state transfer) API (Application programming
interface) using the LoopBack library.

The remainder of this paper is structured as fol-
lows: This implementation is described in section 4,
with the architecture discussed in Sec. 4.1 and the im-
plementation details in Sec. 4.2. The implementation
in and relationship with the SePiA.Pro project, in par-
ticular its

DataHub component is presented in Sec. 5. The
DataHub component of the SePiA.Pro project is de-
scribed in Baumann et al. (Baumann et al., 2017) and
Falkenthal et al. (Falkenthal et al., 2017). This com-
ponent controls, limits, manages, and facilitates the
access and usage of data sources and targets in Indus-
try 4.0 scenarios. This work concludes with a sum-
mary in Sec. 6.

2 RELATED WORK

Guth et al. (Guth et al., 2016) investigated several
state-of-the-art IoT platforms and deduced a gen-
eral and technology-agnostic IoT reference architec-
ture. The presented approach in their work can be
used to implement the abstractly described connec-
tions of their reference architecture between devices,
gateways, IoT integration middlewares, and applica-
tions. While their analysis considers many present
state-of-the-art protocols for connecting IoT devices
to middleware systems and applications, the approach
to overcome the ever-present difficulty of addressing
and connecting IoT devices as presented in this work
extends their list of investigated protocols.

Reinfurt et al. (Reinfurt et al., 2016; Reinfurt
et al., 2017) capture the conceptual essence of dif-
ferent fields of IoT research into patterns. Thereby,
they provide proven nuggets of advice about the de-
sign and characteristics of IoT systems. Our approach
provides concrete solution implementations (Falken-
thal et al., 2014) concerning different abstract solu-
tion principles which are described, e. g., by the pat-
terns Device Gateway, Remote Device Management
and their various different patterns for IoT devices.

Previous work by Baumann et al. (Baumann
et al., 2016c; Baumann et al., 2016a; Baumann
et al., 2016b) provides architectural compositions
and implementations of distributed control systems
for the use case of 3D printing in remote environ-
ments. These systems are based on unified control of
3D printing devices and associated adaptors via Inter-
net based protocols. Prior works focus primarily on
the server and communication components of these
systems.

3 FUNDAMENTALS OF THE Tor
NETWORK

The Tor network was developed around the mid 1990s
and released in 2002, as an overlay protocol to allow
safe, encrypted, and anonymous usage of the Internet
and its services, such as web browsing, email, chat
and file-sharing (Chaabane et al., 2010). Originally
the name was used as an acronym, the onion router
or routing, indicating the underlying design princi-
ple: onion routing (Haraty and Zantout, 2014). This
routing principle is based on the nesting of data pack-
ages within each other that are partially unpacked by
stations along the communication path to recover the
encrypted package destined for the next hop or des-
tination. The stations along the way are called Tor
relays, more specifically middle relays, bridges (pri-
vate relays not generally known to the public) and
exit or end relays. Based on these nodes the Inter-
net traffic is routed over several relays to its final
destination in a way that the party on the other end
of the connection can’t trace the traffic back to the
source. This principle ensures the anonymity of par-
ticipants in the Tor network, which has reportedly
been employed by journalists, law enforcement agen-
cies but also for drug trafficking, the distribution of
illegal content over the Internet and other illicit dig-
ital actions. Today the Tor network consists of sev-
eral thousand relays (2017-07-20: 6914 relays with
12.3 GByte

s bandwidth1), several hundreds of which
are exit nodes (2017-07-20: 794 exit nodes), the re-
lays connect a given request to its final destination in
the Internet. The number of daily users was around 4
million (Dredge, 2013) in 2013. Tor uses a data struc-
ture that can potentially be identified and filtered by
firewalls, but also provides means to obfuscate its traf-
fic to avoid detection and disruption (The Tor Project,
).

Furthermore, Tor allows the consumption of so
called Hidden Services, which are only exposed and
reachable within the Tor network and only by the
users who connect their systems to the Tor network
using a client software. These services are identi-
fied by a .onion address, a 16 alpha-semi-numeric
character of 80 bit length. This domain was declared
a special use domain in 2015 by the IETF (Willis,
2015).

The main drawback of the Tor network is perfor-
mance. The principle of onion routing with all its
relaying steps and the cryptographic operations in-
volved slow down the experienced network speed.
On the other hand, although Tor network ensures

1Tor Network Status http://torstatus.blutmagie.de
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Figure 1: Working Principle of the Tor Network; Fig-
ure source: https://commons.wikimedia.org/wiki/File:Tor-
onion-network.png; author: Electronic Frontier Foundation
(EFF); licence: CC BY 3.0 US.

anonymity for Internet connections to a high degree,
it is not a perfect system (Dingledine, 2011). There
have been several successful attacks (mostly from law
enforcement agencies while investigating for crimi-
nal activities) on the Tor browser, the most vulner-
able part on the Tor system. The mere usage of an
anonymity software can make participants move into
the focus of law enforcement agencies.

So what value does Tor bring to our work? Tor
provides the technological basis for static address-
ing within an overlay and some sense of firewall ag-
nostic communication layer. Furthermore, it facili-
tates an additional layer of security, i. e., encryption,
between the communicating parties, i. e., the server
and the client. A requirement for the applicability
of this method is that the client system, the CPS or
IoT device, must be able to establish outgoing con-
nections through the firewall to the Internet. The sys-
tem is designed to be mostly uni-directional, polling
or requesting data from the server, thus, the commu-
nication is coming from the client behind the fire-
wall, mimicking ordinary user behaviour such as web
surfing, which is likely to be allowed by the net-
work configuration. The Tor network is actively re-
searched (Ren and Wu, 2010) and developed, thus,
making it more likely that drawbacks and flaws in the
system getting fixed within reasonable time.

4 Tor-BASED ADDRESSING AND
COMMUNICATION FOR IoT
DEVICES

The system is composed of two parts, with the client
component deployed to and operated on a micro-
computing system, such as a Raspberry Pi 2, and the
server component operating on another system, e. g.,

in the cloud. The server component is implemented
as a RESTful API using LoopBack (StrongLoop, )
for NodeJS (Node.js Foundation, ). The server ex-
poses and offers its functionality over HTTP (Hyper-
text transfer protocol) and is described in detail in the
publications referred as (Baumann et al., 2016c; Bau-
mann et al., 2016a; Baumann et al., 2016b). Only the
necessary basic concepts of the server component are
described herein. The conceptual and architectural
composition of the system is described in the follow-
ing section (4.1). A third component, the DeploySup-
port is implemented to facilitate the deployment and
installation of the system and described in Sec. 4.2.
The system has security as a key design principle with
the utilisation of separated execution environments on
the micro computing system, cryptographic signing
and securing of data during transport and using se-
cured data channels. The server component creates
a Tor hidden service to which it binds its RESTful
HTTP API for connection. A Tor hidden service, is a
service within the Tor network, that provides a certain
functionality within the network by a local service,
ordinarily offered over the Internet, such as a HTTP
server, a website or a chat service.

The micro computing platform on which this sys-
tem (the client) is deployed, is a Raspberry Pi 2. In
this figure, the system is connected to an Ethernet ca-
ble (red cable) and with USB (black cable) to an exter-
nal device, a 3D printer. Furthermore, the platform is
connected with a USB serial connection to a host sys-
tem for debugging purposes. In operation, this USB
serial connection cable is removed.

To further allow control of the platform, besides
the client-server model described in the following, a
SSH server is utilised on the client. On the first startup
of the system, passwords for the user and administra-
tor are generated randomly. These passwords are sup-
plied to the server in encrypted form, along with other
installation information.

4.1 System Architecture

Fig. 2 depicts an overview of the implemented sys-
tem. In this figure, the CPS consists of the 3D printer,
associated sensors, the micro computing system, i. e.,
the Raspberry Pi 2, and their digital representation
and controlling capability. The system depicted here
is communicating over the Tor network over the In-
ternet. In the figure, the red text ¡ENC¿ is supposed
to indicate an encrypted and secured channel through
the Internet. The central server component is de-
ployed to a system reachable over the Internet, e. g.,
a cloud-based hosting system. The Tor network pro-
vides addressability based on cryptographic hashes,
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as indicated by the text Tor Address in the figure.
These hashes are unique and identify components.
The client is periodically polling the server for in-
formation and instructions to be executed on the mi-
cro computing system. All communication is initi-
ated by the client and targeted outwards of the net-
work. The server provides work instructions as work
instruction packages in a queue, which is synchro-
nised with an information storage component to en-
sure the consistency of instructions. Conceptually,
the work instruction packages are self-contained com-
pressed packages, that are cryptographically signed
and encrypted. In these packages, the required in-
structions, software, and data can be included, thus,
enabling function shipping.

Fig. 3 depicts the composition and distribution of
the components of the system. The DeploySupport
component consists of BASH scripts, that facilitate in-
stallation and configuration of the client system on the
micro computing system. These components are de-
scribed in the following at a high level.

The installer acquires an image of the latest Arch-
Linux OS distribution and prepare a storage medium
for use in the micro computing system with it. In our
case, this storage medium is an SD-card. Alterna-
tive deployment strategies and mechanisms, such as
Tosca4IoT (Ebner et al., 2017), can be used to deploy
the system onto the micro computing system. For fur-
ther iterations of this software, the extension and us-
age of alternative, automated and controlled, deploy-
ment strategies and mechanisms is intended.

4.2 Prototypical Implementation

Conceptually the client is created from one central,
continually running loop, which checks for internal
state, such as connectivity and utilisation, and per-
forms subsequent actions.

The initial action of the client, prior to entering
the control loop, hardens its execution environment to
make it more robust against attacks.

The following action of the client checks for the
required binaries and scripts in the respective paths
of the operating system. In case the required binaries
and scripts are unavailable, the execution of the client
is terminated. If all required software is present, then
the configuration information is processed. Configu-
ration information is stored locally to enable consis-
tent utilisation over reboots and system interruptions.
The configuration consists of information such as a
unique identifier, the remote endpoints and encryption
components. The main loop of the client repeatedly
checks the following information in the specific order:

• Status of the client daemon itself; checking if the

client software is still running on the system and
if the watchdog is present. The client watchdog
is a component to prevent the client from hanging
and restarts the system in case of aborts or errors.

• Connectivity; checking the connectivity of the
system in general, i. e., checking if a network con-
nection is established, if name resolution can be
performed, if certain hosts on the Internet are
reachable and if the central server can be con-
nected with.

• Remaining disk space and space utilisation;
Checking if sufficient disk space for the down-
loading of work instruction packages is available.
In case the disk space is low and insufficient, fur-
ther execution, i. e., fetching of instructions, is
paused and this status is communicated with the
central server.
In case the periodic checks are completed suffi-

ciently, the client polls the central server for work.
This polling for work queries a specific RESTful end-
point and the result of this poll is either the infor-
mation that currently no work is expected to be per-
formed or information on the number of work pack-
ages and logical location of the work packages. If the
client has work to perform, the information on the ex-
isting work packages is used to query for the work
packages on another specific RESTful endpoint. The
work package is then transferred over an encrypted
HTTP transport over Tor and stored locally. The work
package is decrypted, deflated and checked for in-
tegrity and correctness. In case the correctness and
integrity checks are sufficient, the work package is
deployed into a jailed environment, for additional se-
curity, and executed. During the execution, the output
of the work package is acquired and, alongside, the
resulting information of the work package, stored for
historical and analytical purposes. This information
is submitted to the server with additional information.
The client execution environment then cleans the tem-
porary and execution folders to avoid space issues and
data leakages.

Independent of this main loop there is a secondary
loop executed periodically. This secondary loop ac-
quires status information on the host operating system
and the micro computing system in general and sub-
mits this information to the central server which can
be considered health data. This data includes infor-
mation on the system’s uptime, its CPU and memory
utilisation, the status of network adapters and mem-
ory devices. It is executed completely independent of
the main loop.

As depicted in Fig. 3, the Execution Engine is
part of the client package and executes the acquired
work packages locally. For the execution of the
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Figure 2: Overview Structure of Implemented System.

Figure 3: Component Structure of Implemented System.

work packages, a specific Linux jail environment us-
ing chroot is created and the execution is performed
therein. These separate and distinct environments
are utilised to avoid corruption of the system by ma-
licious or malformed work package content. The
initial creation of a prototypical jail environment is
performed by the Installer and the Configurator as
part of the DeploySupport component as depicted in
Fig. 3. The Log and Storage components on the
server and the client are implemented as file and di-
rectory based storage systems, to hold the histori-
cal execution output from the work packages and

the operation of the client and server itself. The
implementation of the client is a BASH script and
consists of approximately 1900 lines of code. The
code is available on GitHub and licensed as CC-BY.
See https://github.com/baumanfx/RaspberryPi Client
for more details on the client software. In the follow-
ing pseudo code, the structure of the client execution
is depicted:

harden();
statusHealthLoop & // The ampersand

indicating background/parallel
operation

checkBinaries();
if ( binaryMissing ) { abort(); }
readConfig();
if ( noConfigFound ) { createNewConfig();

}
while ( true ) { // main loop
checkClient();
if ( clientProblem || watchdogFailed )

{
solveProblem(); // e.g. restart

watchdog or client
}
checkConnectivity();
if ( noConnectivity ) {
continue; // skip execution of loop

and start anew
}
checkDiskSpace();
queryServerForWorkpackage();
if ( workpackageAvailable &&

diskSpaceAvailable ) {
downloadWorkpackage();

unzipWorkpackage();
checkIntegrityOfWorkpackage();
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deployWorkpackageToJail();
executeWorkpackage();
aquireLogAndStatus();
submitWorkpackageInformationToServer();
cleanUp();

} } }

The server component is adapted from an-
other project, a cloud-based 3D printer control sys-
tem (Baumann et al., 2016c; Baumann et al., 2016a;
Baumann et al., 2016b), which was designed to dis-
tribute work packages to micro computing platforms
that directly controlled attached 3D printers. The
adaption for the SePiA.Pro project is that the work
packages now contain execution instructions for the
acquisition of sensor data from CPS and control and
management instructions for the control of industrial
machinery over standardized protocols, e. g., OPC UA
(Open Platform Communications Unified Architec-
ture (Leitner and Mahnke, 2006; TC 65/SC 65E,
2015)).

Furthermore, the components for the installation
and configuration of the system are available on the
same repository. The components for the central
server component are published separately and have
been described in previous publications.

Further supplementary material include service
definition scripts for the systemd system on ArchLinux
OS, exemplary udev rule files for the unified access of
a 3D printer and webcams to the system.

5 INTEGRATION TO DataHub

The problem to be solved with this work is moti-
vated by the research project SePiA.Pro (Deutsches
Forschungszentrum für Künstliche Intelligenz et al., )
which aims to integrate industrial machinery to smart
services. In this project, the addressability and con-
nectivity of the machines or their CPS representation
is a problem that is solvable via the proposed client-
server system. The project aims to solve challenges
in Industry 4.0. CPS in Industry 4.0 settings de-
mand a seamless integration of a potentially huge set
of data sources, potentially across geographic (such
as production plants) or even organisational bound-
aries (for example when optimizing a whole sup-
ply chain) for large scale data-analysis to support
concepts such as predictive maintenance. A data
integration solution, explicitly addressing such sce-
narios is currently developed within the SePiA.Pro
research project (Deutsches Forschungszentrum für
Künstliche Intelligenz et al., ).

The DataHub in this project is a component that
builds upon a modular architecture for integrating var-

ious data sources into one overarching hierarchical
meta model. Each data source (e. g., sensor or even
enterprise database) thus ”exposes” only a projection
of the overall meta model. By employing such a
meta-model integration approach, we can define and
enforce aggregation, access control, and data redun-
dancy together with master/slave definition and syn-
chronisation topics in a central manner, simply at the
DataHub node. Designing the DataHub nodes self-
referencable and equipping them with automated pol-
icy enforcement functionality (Baumann et al., 2017)
allows us to create hierarchical systems of data inte-
gration nodes, covering intra as well as secure inter
company data analytics.

System architectures as depicted in this paper in-
tegrate perfectly into such a system of integrated data
analytics. Sensors and other CPS devices can be ad-
dressed in a stable manner, which becomes even more
of a necessity and at the same time a technical prob-
lem in cross-company scenarios. Also the stable con-
nectivity across company boundaries and thus fire-
walls or NAT (network address translation) configu-
rations is also essential for the depicted setting.

The DataHub and its integration in the SePiA.Pro
project and the connection to this proposed system is
depicted in Fig. 4. In this figure, the different con-
nection mechanisms from industrial machinery to the
DataHub component are depicted by three different
exemplary machines of which two are connected us-
ing the proposed client-server model over the Tor net-
work. The figure depicts components (Trust Center,
Smart DataHub, IoT/CPS, Models, Data, Machines)
and information flows (Meta Data, Operating Data,
etc.) between the components. The Trust Center
component in this figure is an authoritative instance
that controls, defines, and manages access and us-
age rights on all further components and acquires the
relevant models and data from stakeholders. The bi-
directional access to the industrial machines is indi-
cated by the dual-arrows. Data that is acquired and
processed includes machine and environmental meta
data, operating data, and the associated instructions
for the machines and sensors.

6 CONCLUSION & FUTURE
WORK

In this publication, a method to address CPS or IoT
devices based on the Tor network was proposed and
described. The description was performed in a high-
level manner based on the architecture and through
an example. The code for this client-server system
is published on a public repository and available for
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Figure 4: Smart DataHub Component and Relationship to Project and Proposed Client-Server Model.

study and application. The addressing of the client
and communication with the server, as described, re-
lies on the systems capability to make outbound con-
nections through a firewall. The system presented
here enables the usage of remote systems behind fire-
walls and in potentially unknown networking envi-
ronments. The system is motivated by the SePiA.Pro
project and its central component, the DataHub.

In future work we plan to automate the provision-
ing and management of whole IoT integration sce-
narios including IoT devices and middleware, such as
presented in this work, but also data processing com-
ponents, such as analytics platforms as demonstrated
by Falkenthal et al. (Falkenthal et al., 2016b).
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