REFERENCES
Etzioni, O. (2011). Search needs a shake-up. Nature,
476(7358):25–26.
Fader, A., Zettlemoyer, L., and Etzioni, O. (2014). Open
question answering over curated and extracted knowl-
edge bases. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 1156–1165. ACM.
Finkel, J. R., Grenager, T., and Manning, C. (2005). Incor-
porating non-local information into information ex-
traction systems by gibbs sampling. In Proceedings of
the 43rd Annual Meeting on Association for Computa-
tional Linguistics, ACL ’05, pages 363–370, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.
Horák, A. and Medved’, M. (2014). SQAD: Simple ques-
tion answering database. In Eighth Workshop on Re-
cent Advances in Slavonic Natural Language Process-
ing, pages 121–128, Brno. Tribun EU.
Jakubí
ˇ
cek, M., Kilgarriff, A., Ková
ˇ
r, V., Rychlý, P., and Su-
chomel, V. (2013). The tenten corpus family. In 7th
International Corpus Linguistics Conference, pages
125–127.
Jakubí
ˇ
cek, M., Ková
ˇ
r, V., and Šmerk, P. (2011). Czech Mor-
phological Tagset Revisited. Proceedings of Recent
Advances in Slavonic Natural Language Processing
2011, pages 29–42.
Ková
ˇ
r, V., Horák, A., and Jakubí
ˇ
cek, M. (2011). Syn-
tactic Analysis Using Finite Patterns: A New Pars-
ing System for Czech. In Human Language Technol-
ogy. Challenges for Computer Science and Linguis-
tics, pages 161–171, Berlin/Heidelberg.
Le, Q. V. and Mikolov, T. (2014). Distributed represen-
tations of sentences and documents. In ICML, vol-
ume 14, pages 1188–1196.
Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kon-
tokostas, D., Mendes, P. N., Hellmann, S., Morsey,
M., Van Kleef, P., Auer, S., et al. (2015). DBpedia –
a large-scale, multilingual knowledge base extracted
from Wikipedia. Semantic Web, 6(2):167–195.
Li, X. and Roth, D. (2002). Learning question classifiers.
In Proceedings of the 19th international conference on
Computational linguistics-Volume 1, pages 1–7. Asso-
ciation for Computational Linguistics.
Medved’, M. and Horák, A. (2016). AQA: Automatic Ques-
tion Answering System for Czech. In International
Conference on Text, Speech, and Dialogue, pages
270–278. Springer.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vec-
tor space. In Proceedings of Workshop at the In-
ternational Conference on Learning Repre- sentation,
Scottsdale, USA.
Pomikálek, J., Jakubí
ˇ
cek, M., and Rychlý, P. (2012).
Building a 70 billion word corpus of English from
ClueWeb. In LREC, pages 502–506.
Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016).
Squad: 100, 000+ questions for machine comprehen-
sion of text. CoRR, abs/1606.05250.
ˇ
Reh˚u
ˇ
rek, R. and Sojka, P. (2010). Software Framework
for Topic Modelling with Large Corpora. In Proceed-
ings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks, pages 45–50, Valletta, Malta.
ELRA.
Šev
ˇ
cíková, M., Žabokrtský, Z., Straková, J., and Straka, M.
(2014). Czech named entity corpus 1.1.
Singhal, A. (2012). Introducing the knowledge graph:
things, not strings.
Šmerk, P. (2009). Fast Morphological Analysis of Czech.
In Proceedings of 3rd Workshop on Recent Advances
in Slavonic Natural Language Processing, RASLAN
2009, Brno.
Šmerk, P. (2010). Towards Computational Morphological
Analysis of Czech. PhD thesis, Masaryk University,
Brno, Czech Republic.
Sun, H., Ma, H., Yih, W.-t., Tsai, C.-T., Liu, J., and Chang,
M.-W. (2015). Open domain question answering via
semantic enrichment. In Proceedings of the 24th In-
ternational Conference on World Wide Web, pages
1045–1055. ACM.
Wang, W., Yang, N., Wei, F., Chang, B., and Zhou, M.
(2017). Gated self-matching networks for reading
comprehension and question answering. In Proceed-
ings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
volume 1, pages 189–198.
Xiong, C., Zhong, V., and Socher, R. (2017). Dynamic
coattention networks for question answering. In-
ternational Conference on Learning Representations,
abs/1611.01604.
Yang, Y., Yih, W.-t., and Meek, C. (2015). WikiQA: A
challenge dataset for open-domain question answer-
ing. In Proceedings of the Conference on Empirical
Methods for Natural Language Processing, EMNLP
2015, pages pp.2013–2018.
Yih, W.-t., He, X., and Meek, C. (2014). Semantic parsing
for single-relation question answering. In ACL (2),
pages 643–648. The Association for Computational
Linguistics.
ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence
492