here to obtain a good recognition rate on data that are
not used during learning. There is still some works
to succeed in the recognition of new digitized docu-
ments from multilingual and multi-period resources.
REFERENCES
Arvanitopoulos, N. and S
¨
usstrunk, S. (2014). Seam carving
for text line extraction on color and grayscale histori-
cal manuscripts. In ICFHR, pages 726–731.
Augustin, E., Brodin, J.-m., Carr
´
e, M., Geoffrois, E.,
Grosicki, E., and Preteux, F. (2006). RIMES evalu-
ation campaign for handwritten mail processing. In
ICFHR.
Bunke, H., Roth, M., and Schukat-Talamazzini, E. G.
(1995). Off-line cursive handwriting recognition us-
ing hidden markov models. PR, 28(9):1399–1413.
Cloppet, F., Eglin, V., Kieu, V., Stutzmann, D., and Vin-
cent, N. (2016). ICFHR 2016 competition on the clas-
sification of medieval handwritings in latin script. In
ICFHR, pages 590–595.
Donahue, J., Anne Hendricks, L., Guadarrama, S.,
Rohrbach, M., Venugopalan, S., Saenko, K., and Dar-
rell, T. (2015). Long-term recurrent convolutional
networks for visual recognition and description. In
CVPR, pages 2625–2634.
Fischer, A., Keller, A., Frinken, V., and Bunke, H. (2012).
Lexicon-free handwritten word spotting using charac-
ter HMMs. PRL, 33(7):934–942.
Fischer, A., W
¨
uthrich, M., Liwicki, M., Frinken, V., Bunke,
H., Viehhauser, G., and Stolz, M. (2009). Automatic
transcription of handwritten medieval documents. In
VSMM, pages 137–142.
Frinken, V., Fischer, A., Bunke, H., and Manmatha, R.
(2010). Adapting BLSTM neural network based key-
word spotting trained on modern data to historical
documents. In ICFHR, pages 352–357.
Frinken, V., Fischer, A., Manmatha, R., and Bunke, H.
(2012). A novel word spotting method based on
recurrent neural networks. IEEE Trans. on PAMI,
34(2):211–224.
Graves, A. (2012). Supervised Sequence Labelling with Re-
current Neural Networks. Springer.
Graves, A. and Schmidhuber, J. (2009). Offline handwrit-
ing recognition with multidimensional recurrent neu-
ral networks. In NIPS, pages 545–552.
Grosicki, E. and El Abed, H. (2009). ICDAR 2009 hand-
writing recognition competition. In ICDAR, pages
1398–1402.
Grosicki, E. and El-Abed, H. (2011). ICDAR 2011:
French handwriting recognition competition. In IC-
DAR, pages 1459–1463.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9(8):1735–1780.
Koerich, A. L., Leydier, Y., Sabourin, R., and Suen, C. Y.
(2002). A hybrid large vocabulary handwritten word
recognition system using neural networks with hidden
markov models. In ICFHR, pages 99–104.
Kozielski, M., Doetsch, P., Hamdani, M., and Ney, H.
(2014). Multilingual off-line handwriting recognition
in real-world images. In DAS, pages 121–125.
Lavrenko, V., Rath, T. M., and Manmatha, R. (2004). Holis-
tic word recognition for handwritten historical docu-
ments. In DIAL, pages 278–287.
Llad
´
os, J., Rusi
˜
nol, M., Forn
´
es, A., Fern
´
andez, D., and
Dutta, A. (2012). On the influence of word repre-
sentations for handwritten word spotting in historical
documents. IJPRAI, 26(05):1263002–1–25.
Moysset, B., Bluche, T., Knibbe, M., Benzeghiba, M. F.,
Messina, R., Louradour, J., and Kermorvant, C.
(2014). The A2iA multi-lingual text recognition sys-
tem at the second maurdor evaluation. In ICFHR,
pages 297–302.
Murdock, M., Reid, S., Hamilton, B., and Reese, J. (2015).
ICDAR 2015 competition on text line detection in his-
torical documents. In ICDAR, pages 1171–1175.
Oprean, C., Likforman-Sulem, L., Popescu, A., and Mok-
bel, C. (2013). Using the web to create dynamic
dictionaries in handwritten out-of-vocabulary word
recognition. In ICDAR, pages 989–993.
Pan, S. J. and Yang, Q. (2010). A survey on transfer learn-
ing. IEEE Tran. on KDE, 22(10):1345–1359.
Pham, V., Bluche, T., Kermorvant, C., and Louradour, J.
(2014). Dropout improves recurrent neural networks
for handwriting recognition. In ICFHR, pages 285–
290.
Puigcerver, J., Toselli, A. H., and Vidal, E. (2015). ICDAR
2015 competition on keyword spotting for handwrit-
ten documents. In ICDAR, pages 1176–1180.
Rath, T. M. and Manmatha, R. (2007). Word spotting for
historical documents. IJDAR, 9(2):139–152.
Romero, V., Forn
´
es, A., Serrano, N., S
´
anchez, J. A., Toselli,
A. H., Frinken, V., Vidal, E., and Llad
´
os, J. (2013).
The ESPOSALLES database: An ancient marriage li-
cense corpus for off-line hwr. PR, 46(6):1658–1669.
Senior, A. W. and Robinson, A. J. (1998). An off-
line cursive handwriting recognition system. PAMI,
20(3):309–321.
Suryani, D., Doetsch, P., and Ney, H. (2016). On the bene-
fits of convolutional neural network combinations in
offline handwriting recognition. In ICFHR, pages
193–198.
Terasawa, K. and Tanaka, Y. (2009). Slit style HOG feature
for document image word spotting. In ICDAR, pages
116–120.
Voigtlaender, P., Doetsch, P., and Ney, H. (2016). Hand-
writing recognition with large multidimensional long
short-term memory recurrent neural networks. In
ICFHR, pages 2228–233.
Transfer Learning for Handwriting Recognition on Historical Documents
439