Bokde, D., Girase, S., and Mukhopadhyay, D. (2015). Ma-
trix factorization model in collaborative filtering algo-
rithms: A survey. Procedia Computer Science, 49:136
– 146. Proceedings of 4th International Conference on
Advances in Computing, Communication and Control
(ICAC3’15).
Breese, J. S., Heckerman, D., and Kadie, C. (1998). Empiri-
cal analysis of predictive algorithms for collaborative
filtering. In Proceedings of the Fourteenth conference
on Uncertainty in artificial intelligence, pages 43–52.
Brown, P. F., deSouza, P. V., Mercer, R. L., Pietra, V. J. D.,
and Lai, J. C. (1992). Class-based n-gram models of
natural language. Comput. Linguist., 18(4):467–479.
Burke, R. (2002). Hybrid recommender systems: Survey
and experiments. User modeling and user-adapted in-
teraction, 12(4):331–370.
Cohen, W. W. and Fan, W. (2000). Web-collaborative fil-
tering: Recommending music by crawling the web.
Computer Networks, 33(1):685–698.
Dakhel, G. and Mahdavi, M. (2011). A new collaborative
filtering algorithm using k-means clustering and neig-
hbors’ voting. In Hybrid Intelligent Systems (HIS),
2011 11th International Conference on, pages 179–
184.
Darvishi-Mirshekarlou, F., Akbarpour, S., Feizi-Derakhshi,
M., et al. (2013). Reviewing cluster based colla-
borative filtering approaches. International Journal
of Computer Applications Technology and Research,
2(6):650–659.
Ekstrand, M. D., Riedl, J. T., and Konstan, J. A. (2011).
Collaborative filtering recommender systems. Found.
Trends Hum.-Comput. Interact., 4(2):81–173.
Feng, Z. and Huiyou, C. (2006). Employing bp neural net-
works to alleviate the sparsity issue in collaborative
filtering recommendation algorithms [j]. Journal of
Computer Research and Development, 4:014.
Geman, S. and Geman, D. (1984). Stochastic relaxation,
gibbs distributions, and the bayesian restoration of
images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-6(6):721–741.
Gong, S., Ye, H., and Tan, H. (2009). Combining memory-
based and model-based collaborative filtering in re-
commender system. In Circuits, Communications and
Systems, 2009. PACCS’09. Pacific-Asia Conference
on, pages 690–693. IEEE.
Guan, Y., Ghorbani, A. A., and Belacel, N. (2003a). An
unsupervised clustering algorithm for intrusion de-
tection. In Advances in Artificial Intelligence, 16th
Conference of the Canadian Society for Computatio-
nal Studies of Intelligence, AI 2003, Halifax, Canada,
June 11-13, 2003, Proceedings, pages 616–617.
Guan, Y., Ghorbani, A. A., and Belacel, N. (2003b). Y-
means: a clustering method for intrusion detection.
In Electrical and Computer Engineering, 2003. IEEE
CCECE 2003. Canadian Conference on, volume 2,
pages 1083–1086. IEEE.
Hansen, P. and Mladenovic, N. (2001). J-means: a new lo-
cal search heuristic for minimum sum of squares clus-
tering. Pattern Recognition, 34(2):405 – 413.
Harper, F. M. and Konstan, J. A. (2015). The movielens
datasets: History and context. ACM Trans. Interact.
Intell. Syst., 5(4):19:1–19:19.
Herlocker, J., Konstan, J. A., and Riedl, J. (2002). An
empirical analysis of design choices in neighborhood-
based collaborative filtering algorithms. Information
retrieval, 5(4):287–310.
Herlocker, J. L., Konstan, J. A., Borchers, A., and Riedj,
J. (1999). An algorithmic framework for performing
collaborative filtering. In Proceedings of the 22nd An-
nual International ACM SIGIR Conference on Rese-
arch and Development in Information Retrieval, SI-
GIR ’99, pages 230–237, New York, NY, USA. ACM.
Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl,
J. T. (2004). Evaluating collaborative filtering recom-
mender systems. ACM Transactions on Information
Systems (TOIS), 22(1):5–53.
Hofmann, T. and Puzicha, J. (1999). Latent class models
for collaborative filtering. In IJCAI, volume 99, pages
688–693.
Hu, R., Dou, W., and Liu, J. (2013). Clustering-based colla-
borative filtering approach for mashups recommenda-
tion over big data. In Computational Science and En-
gineering (CSE), 2013 IEEE 16th International Con-
ference on, pages 810–817.
Huang, C. and Yin, J. (2010). Effective association clus-
ters filtering to cold-start recommendations. In Fuzzy
Systems and Knowledge Discovery (FSKD), 2010 Se-
venth International Conference on, volume 5, pages
2461–2464. IEEE.
Huang, H., Zhang, R., Xiong, F., Makedon, F., Shen, L.,
Hettleman, B., and Pearlman, J. (2005). K-means+
method for improving gene selection for classification
of microarray data. In Computational Systems Bioin-
formatics Conference, pages 110–111. IEEE.
Jawaheer, G., Szomszor, M., and Kostkova, P. (2010). Com-
parison of implicit and explicit feedback from an on-
line music recommendation service. In proceedings
of the 1st international workshop on information he-
terogeneity and fusion in recommender systems, pages
47–51. ACM.
Kohrs, A. and Merialdo, B. (1999). Clustering for collabo-
rative filtering applications. Intelligent Image Proces-
sing, Data Analysis & Information Retrieval, 3:199–
205.
Koren, Y. (2010). Factor in the neighbors: Scalable and
accurate collaborative filtering. ACM Trans. Knowl.
Discov. Data, 4(1):1–24.
Laplante, F., Belacel, N., and Kardouchi, M. (2015). A heu-
ristic automatic clustering method based on hierarchi-
cal clustering. In Revised Selected Papers of the 6th
International Conference on Agents and Artificial In-
telligence - Volume 8946, ICAART 2014, pages 312–
328, New York, NY, USA. Springer-Verlag New York,
Inc.
Linden, G., Smith, B., and York, J. (2003). Amazon.com re-
commendations: Item-to-item collaborative filtering.
Internet Computing, IEEE, 7(1):76–80.
Liu, H., Hu, Z., Mian, A., Tian, H., and Zhu, X. (2014).
A new user similarity model to improve the accuracy
Splitting-merging Clustering Algorithm for Collaborative Filtering Recommendation System
173