Table 2: Review of well-known Bio-Sensors market products with major performance specifications.
Company Product Channel Electrodes EEG Placement Bio Sensors Data
Transfer
Sampling
rate
(kHz)
Battery
Auto-
nomy
System
Cost ($)
Brain Products ActiCHamp 160 Wet (Fp) (F) (C) (T) (P) (O) EEG USB 10-25 6 hr 96,500
128 Wet (Fp) (F) (C) (T) (P) (O) EEG USB 10-25 6 hr 80,000
96 Wet (Fp) (F) (C) (T) (P) (O) EEG USB 10-25 6 hr 66,200
64 Wet (Fp) (F) (C) (T) (P) (O) EEG USB 25-50 6 hr 49,900
32 Wet (Fp) (F) (C) (T) (P) (O) EEG USB 50-100 6 hr 35,600
ActiCap 16 Wet/Dry (Fp) (F) (C) (T) (P) (O) EEG USB 2-20 6 hr 11,375
ANT Neuro eego/rt sports 64+24 Wet (Fp) (F) (C) (T) (P) (O) EEG EMG EOG USB 2.048 6 hr > 25,000
Biosemi Active Two 256+7 Wet (Fp) (F) (C) (T) (P) (O) EEG ECG EMG USB 2-16 5 hr 75,000
160+7 Wet (Fp) (F) (C) (T) (P) (O) EEG ECG EMG USB 2-16 5 hr 52,000
128+7 Wet (Fp) (F) (C) (T) (P) (O) EEG ECG EMG USB 2-16 5 hr 45,000
64+7 Wet (Fp) (F) (C) (T) (P) (O) EEG ECG EMG USB 2-16 5 hr 27,000
32+7 Wet (Fp) (F) (C) (T) (P) (O) EEG ECG EMG USB 2-16 5 hr 21,000
16+7 Wet (Fp) (F) (C) (T) (P) (O) EEG ECG EMG USB 2-16 5 hr 17,000
8+7 Wet (Fp) (F) (C) (T) (P) (O) EEG ECG EMG USB 2-16 5 hr 13,500
Cognionics Dry Head Set 16+8 Dry (Fp) (F) (C) (T) (P) (O) EEG ECG EMG BLE 0.262 6 hr ∼15,500
24+8 Dry (Fp) (F) (C) (T) (P) (O) EEG ECG EMG BLE 0.262 6 hr ∼20,500
32+8 Dry (Fp) (F) (C) (T) (P) (O) EEG ECG EMG BLE 0.262 6 hr 26,500
64+8 Dry (Fp) (F) (C) (T) (P) (O) EEG ECG EMG BLE 0.262 6 hr 42,600
Quick-20 20+8 Dry (Fp) (F) (C) (T) (P) (O) EEG ECG EMG BLE 0.262 6 hr 20,600
Sleep Headband 10 Dry (Fp) (F) (T) EEG BLE 0.262 6 hr 3,800
G.tec g.sahara/nautilus 8 Wet/Dry (Fp) (F) (C) (T) (P) (O) EEG RF 0.25/0.5 8 hr 4,500
16 Wet/Dry (Fp) (F) (C) (T) (P) (O) EEG RF 0.25/0.5 8 hr ∼9,500
32 Wet/Dry (Fp) (F) (C) (T) (P) (O) EEG RF 0.25/0.5 8 hr ≤25,000
QUASAR DSI10/20 21 Dry (Fp) (F) (C) (T) (P) (O) EEG ECG EMG EOG BLE 0.24/0.9 24 hr 22,500
NeuroElectrics Enobio 8 Wet/Dry (Fp) (F) (C) (T) (P) (O) EEG ECG EMG EOG BLE 0.25 8 hr 4,995
20 Wet/Dry (Fp) (F) (C) (T) (P) (O) EEG ECG EMG EOG BLE 0.25 8 hr 14,495
32 Wet/Dry (Fp) (F) (C) (T) (P) (O) EEG ECG EMG EOG BLE 0.25 8 hr 24,995
ABM B-Alert X10 9+4 Wet (F) (C) (P) EEG ECG EMG EOG BLE 0.256 8 hr 9,950
B-Alert X24 20+4 Wet (F) (C) (P) (O) EEG ECG EMG EOG BLE 0.256 8 hr 19,950
NeuroScan Quick Caps 256 Wet (Fp) (F) (C) (T) (P) (O) EEG ECG EMG EOG USB 02/0.5 0 81,396
Mind Media NeXus-32 21 Wet (Fp) (F) (C) (T) (P) (O) EEG ECG EMG EOG BLE 2.048 20 hr 23,995
mBrainTrain EEG Cap 24 Wet (Fp) (F) (C) (T) (P) (O) EEG BLE 0.25/0.5 5 hr 6,925
OpenBCI Head Set 4 Wet/Dry (Fp) (F) (C) (T) EEG ECG EMG RF/BLE 0.20 26 hr 199+60
8 Wet/Dry (Fp) (F) (C) (T) (P) (O) EEG ECG EMG RF/BLE 0.25 26 hr 499+60
16 Wet/Dry (Fp) (F) (C) (T) (P) (O) EEG ECG EMG RF/BLE 0.25 26 hr 899+60
IMEC EEG Headset 8 Dry (F) (C) (T) (P) EEG BLE 22 hr 25,000
Olimex OpenEEG 2 Wet/Dry (Fp) (F) EEG USB 0.19/0.5 0 119
Emotiv EPOC+ 14 Wet (F) (T) (P) (O) EEG RF 0.128 12 hr 799
Insight 5 Dry (F) (T) (P) EEG RF 0.128 4 hr 299
NeuroSky Mind Wave 1 Dry (Fp) EEG RF 0.25 8 hr 130
Macrotellect BrainLink 1 Dry (Fp) EEG BLE 0.512 4 hr 373
InteraXon Inc. Muse 5 Dry (Fp) (P) (O) EEG BLE 0.22 5 hr 299
SensLabs Versus 5 Dry (F) (C) EEG BLE 0.25/1.28 5 hr 399
Melon Inc. Head band 1 Dry (Fp) EEG BLE 0.25 8 hr 149
Focus IFocusBan 2 Dry (Fp) EEG BLE 0.25 12 hr 500
Lee, S., Shin, Y., Woo, S., Kim, K., and Lee, H.-N.
(2013). Review of wireless brain-computer interface
systems. In BCI Systems-Recent Progress and Future
Prospects, pages 215–238. Intech.
Morales, J. M., Di Stasi, L. L., D
´
ıaz-Piedra, C., Morillas,
C., and Romero, S. (2015). Real-time monitoring of
biomedical signals to improve road safety. In Conf. on
Artificial Neural Networks, pages 89–97. Springer.
ROSPA (2001). Driver fatigue and road accidents: A li-
terature review and position paper. Tech. Rep. Royal
Society for the prevention of accidents, Birmingham,
U.K.
Sahayadhas, A., Sundaraj, K., and Murugappan, M. (2012).
Detecting driver drowsiness based on sensors: A re-
view. Sensors, 12(12):16937–16953.
Sanjaya, K., Lee, S., and Katsuura, T. (2016). Review on the
application of physiological and biomechanical mea-
surement methods in driving fatigue detection. Me-
chatronics, Electrical Power, and Vehicular Techno-
logy, 7(1).
Vural, E. (2009). Video based detection of driver fatigue.
Ph.D. Thesis. Sabanci University. Istanbul. Turkey.
Warwick, B., Symons, N., Chen, X., and Xiong, K. (2015).
Detecting driver drowsiness using wireless wearables.
In IEEE MASS, pages 585–588.
Zao, J. K., Gan, T.-T., You, C.-K., Chung, C.-E., Wang, Y.-
T., M
´
endez, S. J. R., Mullen, T., Yu, C., Kothe, C.,
Hsiao, C.-T., et al. (2014). Pervasive brain monitoring
and data sharing based on multi-tier distributed com-
puting and linked data technology. Frontiers in human
neuroscience, 8.
Zilberg, E., Xu, Z. M., Burton, D., Karrar, M., and Lal, S.
(2007). Methodology and initial analysis results for
development of non-invasive and hybrid driver drow-
siness detection systems. In IEEE AusWireless, pages
16–16.
SENSORNETS 2018 - 7th International Conference on Sensor Networks
106