Table 1: Recognition results using MLR classifier based on Berlin and Spanish databases.
database Features
A E F L N T W Rate (%)
MS
avg 41,79 29,86 42,92 75,40 54,84 85,64 78,10 60,70
σ 10,97 9,86 9,07 10,85 6,63 13,37 8,40 2,50
Berlin MFCC
avg 54,48 61,77 46,56 52,05 64,61 80,54 92,67 67,10
σ 19,22 16,82 9,07 10,69 8,47 14,72 7,17 3,96
MFCC+MS
avg 83,63 67,18 56,05 79,43 75,20 87,59 78,92 75,90
σ 9,40 26,43 15,63 14,65 7,55 11,39 7,50 3,63
A D F J N S T Rate (%)
MS
avg 61,61 53,08 72,42 54,20 90,97 61,59 68,16 70,60
σ 3,70 4,03 4,29 4,67 2,14 3,90 4,62 1,37
Spanish MFCC
avg 70,33 52,59 79,18 48,16 96,47 78,00 73,70 76,08
σ 5,22 6,27 2,45 4,51 0,78 4,24 3,53 1,44
MFCC+MS
avg 77,46 76,31 83,39 66,56 97,14 80,96 84,99 82,41
σ 3,26 2,93 2,47 3,68 1,19 4,81 4,95 4,14
Spanish (a:anger, d:disgust, f:fear, j:joy, n:neutral, s:surprise, t: sadness) Berlin (a:fear, e:disgust, f:happiness, l:boredom, n:neutral, t:sadness, w:anger).
Table 2: Recognition results using SVM classifier based on Berlin and Spanish databases.
database Features
A E F L N T W Rate (%)
MS
avg 60,35 57,54 49,75 66,54 62,93 80,02 67,01 63,30
σ 12,55 22,72 18,14 13,90 12,70 9,36 8,40 4,99
Berlin MFCC
avg 62,76 51,37 44,72 39,25 49,40 66,26 72,20 56,60
σ 16,78 9,03 10,15 14,58 15,12 15,59 7,97 4,88
MFCC+MS
avg 55,04 49,82 44,61 71,60 55,68 70,11 65,42 59,50
σ 12,81 22,16 14,56 15,58 16,30 12,57 10,01 5,76
A D F J N S T Rate (%)
MS
avg 71,99 68,72 79,54 65,59 86,93 69,76 79,76 77,63
σ 6,45 4,21 3,15 5,86 3,50 3,60 3,78 1,67
Spanish MFCC
avg 81,54 80,67 80,18 68,92 68,69 67,12 86,65 70,69
σ 5,56 4,92 8,61 18,57 22,18 29,23 4,07 12,66
MFCC+MS
avg 76,41 85,39 69,76 76,03 53,31 64,40 84,59 68,11
σ 6,65 3,80 3,10 2,50 23,70 2,25 3,27 11,55
Spanish (a:anger, d:disgust, f:fear, j:joy, n:neutral, s:surprise, t: sadness) Berlin (a:fear, e:disgust, f:happiness, l:boredom, n:neutral, t:sadness, w:anger).
Table 3: Recognition results using RNN classifier based on Berlin and Spanish databases.
Dataset Feature Average (avg) Standard deviation (σ)
MS 66.32 5.93
Berlin MFCC 69.55 3.91
MFCC+MS 58.51 3.14
MS 82.30 2.88
Spanish MFCC 86.56 2.80
MFCC+MS 90.05 1.64
Table 4: Confusion matrix for using MFCC and MS features based on spanish database.
Emotion Anger Disgust Fear Joy Neutral Surprise Sadness Rate (%)
Anger 131 14 3 23 8 2 0 72,38
Disgust 3 197 1 6 6 6 2 89,95
Fear 3 15 115 6 12 0 0 76,16
Joy 8 4 1 411 0 11 0 89,14
Neutral 9 14 9 4 144 1 1 79,12
surprise 1 4 0 18 0 133 0 85,26
Sadness 8 1 18 11 17 0 93 62,84
Precision (%) 80,37 79,12 78,23 85,80 77,00 86,92 96,87
Speech Emotion Recognition: Methods and Cases Study
179