REFERENCES
Katahira, K., Ezura, A., Ohkawa, K., Komotori, J.,
Ohmori, H., 2016. Generation of biocompatible
titanium alloy surfaces by laser-induced wet treatment.
CIRP Ann. Manuf. Techn., Vol. 65, pp. 237-240.
Shen, X., Shukla, P., Nath, S., Lawrence, J., 2017.
Improvement in mechanical properties of titanium
alloy (Ti-6Al-7Nb) subject to multiple laser shock
peening. Surf. Coat. Technol., Vol. 327, pp. 101-109.
Kuczyńska, D., Kwaśniak, P., Marczak, J., Bonarski, J.,
Smolik, J., Garbacz, H., 2016. Laser surface treatment
and the resultant hierarchical topography of Ti grade 2
for biomedical application. Appl. Surf. Sci., Vol. 390,
pp.560-569.
Huerta-Murillo, D., Aguilar-Morales, A.I., Alamri, S.,
Cardoso, J.T., Jagdheesh, R., Lasagni, A.F., Ocaña,
J.L., 2017. Fabrication of multi-scale periodic surface
structures on Ti-6Al-4V by direct laser writing and
direct laser interference patterning for modified
wettability applications. Opt. Lasers Eng., Vol. 98,
pp.134-142.
Oliveira, V., Ausset, S., Vilar, R., 2009. Surface
micro/nanostructuring of titanium under stationary and
non-stationary femtosecond laser irradiation. Appl.
Surf. Sci., Vol. 255, pp. 7556-7560.
Angéline, P.Q., Ikuya, W., Etsuko W., Caroline B., 2011.
Microstructure and mechanical properties of surface
treated cast titanium with Nd:YAG laser. Dent. Mater.,
Vol. 28, pp. 945-951.
Coelho, P.G., Granato, R., Marin, C., Teixeira, H.S.,
Suzuki, M., Valverde, G.B., Janal, M.N., Lilin, T.,
Bonfante, E.A., 2011. The effect of different implant
macrogeometries and surface treatment in early
biomechanical fixation: An experimental study in dogs.
J. Mech. Behav. Biomed. Mater., Vol. 284, pp. 1974-
1981.
Bereznai, M., Pelsöczi, I., Tóth, Z., Turzó, K., Radnai, M.,
Bor, Z., Fazekas, A., 2003. Surface modifications
induced by ns and sub-ps excimer laser pulses on
titanium implant material. Biomaterials, Vol. 24, pp.
4197-4203.
Yoshinari, M., Matsuzaka, K., Inoue, T., 2011. Surface
modification by cold-plasma technique for dental
implants– Bio-functionalization with binding
pharmaceuticals. Jpn. Dent. Sci. Rev., Vol. 47, pp. 89-
101.
Elias, C.N., Oshida, Y., Lima, J.H.C., Muller, C.A., 2008.
Relationship between surface properties (roughness,
wettability and morphology) of titanium and dental
implant removal torque. J. Mech. Behav. Biomed.
Mater., Vol. 23. pp. 234-242.
Serap, C., Hüseyin Ö., 2012. Laser-induced novel patterns:
As smart strain actuators for new-age dental implant
surfaces. Appl. Surf. Sci., Vol. 263, pp. 579-585.
Milovanović, D.S., Petrović, S.M., Shulepov, M.A.,
Tarasenko, V.F., Radak, B.B., Miljanić, Š.S., Trtica,
M.S., 2013. Titanium alloy surface modification by
excimer laser irradiation. Opt. Laser Technol., Vol. 54,
pp. 419-427.
Young, T., 1805. An Essay on the Cohesion of Fluids.
Phil. Trans. R. Soc. Lond., Vol. 95, pp. 65-87.
Wenzel, RN., 1936. Resistance of Solid Surfaces to
Wetting by Water. Ind. Eng. Chem., Vol. 28m pp.
988-994.
Cassie, A.B.D., Baxter, S., 1945. The water repellency of
fabrics and a new water repellency test. Tex. Inst. J.,
Vol. 36, pp. 67-90.
PHOTOPTICS 2018 - 6th International Conference on Photonics, Optics and Laser Technology
196