53Ga0. 47As/In0. 52Al0. 48As/InP. Journal of Crystal
Growth, 311(7), pp.1939-1943.
Frankel, M.Y. and Esman, R.D., 1998. Optical single-
sideband suppressed-carrier modulator for wide-band
signal processing. Journal of lightwave
technology, 16(5), p.859.
Gentec-eo, Inc, 2017, https://www.gentec-eo.com/
products/thz-detectors.
Globisch, B., Dietz, R.J.B., Nellen, S., Göbel, T. and
Schell, M., 2016. Terahertz detectors from Be-doped
low-temperature grown InGaAs/InAlAs: Interplay of
annealing and terahertz performance. AIP
Advances, 6(12), p.125011.
Gu, P., Chang, F., Tani, M., Sakai, K. and Pan, C.L., 1999.
Generation of coherent cw-terahertz radiation using a
tunable dual-wavelength external cavity laser
diode. Japanese journal of applied physics, 38(11A),
p.L1246.
Hu, B.B. and Nuss, M.C., 1995. Imaging with terahertz
waves. Optics letters, 20(16), pp.1716-1718.
Karpowicz, N., Zhong, H., Xu, J., Lin, K.I., Hwang, J.S.
and Zhang, X.C., 2005. Comparison between pulsed
terahertz time-domain imaging and continuous wave
terahertz imaging. Semiconductor Science and
Technology, 20(7), p.S293.
Karpowicz, N., Zhong, H., Zhang, C., Lin, K.I., Hwang,
J.S., Xu, J. and Zhang, X.C., 2005. Compact
continuous-wave subterahertz system for inspection
applications. Applied Physics Letters, 86(5), p.054105.
Kim, N., Han, S.P., Ko, H., Leem, Y.A., Ryu, H.C., Lee,
C.W., Lee, D., Jeon, M.Y., Noh, S.K. and Park, K.H.,
2011. Tunable continuous-wave terahertz
generation/detection with compact 1.55 μm detuned
dual-mode laser diode and InGaAs based
photomixer. Optics express, 19(16), pp.15397-15403.
Kim, N., Shin, J., Sim, E., Lee, C.W., Yee, D.S., Jeon,
M.Y., Jang, Y. and Park, K.H., 2009. Monolithic dual-
mode distributed feedback semiconductor laser for
tunable continuous-wave terahertz generation. Optics
express, 17(16), pp.13851-13859.
Kumar, S., 2011. Recent progress in terahertz quantum
cascade lasers. IEEE Journal of Selected Topics in
Quantum Electronics, 17(1), pp.38-47.
Mickan, S., Abbott, D., Munch, J., Zhang, X.C. and Van
Doorn, T., 2000. Analysis of system trade-offs for
terahertz imaging. Microelectronics Journal, 31(7),
pp.503-514.
Morikawa, O., Tonouchi, M., Tani, M., Sakai, K. and
Hangyo, M., 1999. Sub-THz emission properties of
photoconductive antennas excited with multimode
laser diode. Japanese journal of applied
physics, 38(3R), p.1388.
Pan, S., Zhao, X. and Lou, C., 2008. Switchable single-
longitudinal-mode dual-wavelength erbium-doped
fiber ring laser incorporating a semiconductor optical
amplifier. Optics letters, 33(8), pp.764-766.
Pickwell, E. and Wallace, V.P., 2006. Biomedical
applications of terahertz technology. Journal of
Physics D: Applied Physics, 39(17), p.R301.
Preu, S., Döhler, G.H., Malzer, S., Wang, L.J. and
Gossard, A.C., 2011. Tunable, continuous-wave
terahertz photomixer sources and applications. Journal
of Applied Physics, 109(6), p.4.
Shibuya, K., Tani, M., Hangyo, M., Morikawa, O. and
Kan, H., 2007. Compact and inexpensive continuous-
wave subterahertz imaging system with a fiber-
coupled multimode laser diode. Applied physics
letters, 90(16), p.161127.
Soltanian, M.R.K., Amiri, I.S., Alavi, S.E. and Ahmad, H.,
2015. Dual-wavelength erbium-doped fiber laser to
generate terahertz radiation using photonic crystal
fiber. Journal of Lightwave Technology, 33(24),
pp.5038-5046.
Tonouchi, M., 2007. Cutting-edge terahertz
technology. Nature photonics, 1(2), pp.97-105.
TOPTICA Photonics, Inc, 2017, http://www.toptica.com/
products/terahertz-systems/frequency-domain/gaas-
and-ingaas-photomixers/
Ummy, M. A.; Bikorimana, S.; Dorsinville, R.; Beam
Combining of SOA-Based Bidirectional Tunable Fiber
Compound-ring Lasers with External Reflectors.
Optics and Lasers Technology, 2017 5th International
Conference on Photonics. PHOTOPTICS, 2017.
Yamashita, M., Kawase, K., Otani, C., Kiwa, T. and
Tonouchi, M., 2005. Imaging of large-scale integrated
circuits using laser terahertz emission
microscopy. Optics Express, 13(1), pp.115-120.
Continuous Tunable Terahertz Wave Generation via a Novel CW Optical Beat Laser Source
73