
The Application of Neural Networks for Facial Landmarking on Mobile
Devices

Connah Kendrick1, Kevin Tan1, Kevin Walker2 and Moi Hoon Yap1

1School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University,
John Dalton Building, Manchester, U.K.

2Image Metrics Ltd, City Tower, Piccadilly Plaza, Manchester, U.K.

Keywords: Facial Landmarking, Android, Deep Learning.

Abstract: Many modern mobile applications incorporate face detection and landmarking into their systems, such as
Snapchat, beauty filters and camera auto-focusing systems, where they implement regression based machine
learning algorithms for accurate face landmark detection, allowing the manipulation of facial appearance. The
mobile applications that incorporate machine learning have to overcome issues such as lighting, occlusion,
camera quality and false detections. A solution could be provided through the resurgence of deep learning
with neural networks, as they are showing significant improvements in accuracy and reliability in comparison
to the state-of-the-art machine learning. Here, we demonstrate the process by using trained networks on
mobile devices and review its effectiveness. We also compare the effects of employing max-pooling layers, as
an efficient method to reduce the required processing power. We compared network with 3 different amounts
of max-pooling layer and ported one to the mobile device, the other two could not be ported due to memory
restrictions. We will be releasing all code to build, train and use the model in a mobile application. The results
show that despite the limited processing capability of mobile devices, neural networks can be used for difficult
challenges while still working in real-time. We show a network running on a mobile device on a live data
stream and give a recommendation on the structure of the network.

1 INTRODUCTION

Face identification and landmarking are often used
as the backbone to many camera based applications.
Features, such as the auto-focus built into most mod-
ern day cameras use a face detector to identify the
regions that require focusing. Commercial applica-
tions, such as Snapchat (Inc, 2017b), BeautyPlus (Co,
2017) and Makeup Genius (L’Oreal, 2017) are based
around identifying the facial region and performing
image manipulation to the facial features, these appli-
cations are extremely popular and have a high num-
ber of users world-wide. Many mobile applications
rely on the use of machine learning algorithms to
identify patterns in image data. Machine learning
uses pre-annotated data to learn the difference be-
tween the data values, but it requires a large amount
of annotated data to learn which is time consuming
even with the available tools (Kendrick et al., 2017).
However, Mathias (Mathias et al., 2014) showed that
if a strict data annotation regime was implemented,
a small dataset can match the accuracy of methods

trained on large datasets. We aim to analyse how well
neural networks can be integrated into mobile devices
to increase the accuracy and reliability of the applica-
tions.

Deep learning is restricted and inefficient for low-
powered machines, as it requires high-end machines
with powerful Graphical Processing Units (GPUs) ca-
pable of processing the required quantities of data.
However, after the model has been trained, run-
ning the network requires significantly less process-
ing power even without optimization, possibly allow-
ing the models to run on low powered mobile devices.
In recent years, with the increase in power and afford-
ability of GPUs, deep learning has become more com-
monly used and in many recent tests, this method out-
performed machine learning algorithms significantly
(“Grother” and Ngan, 2016). The improved perfor-
mance of deep learning architectures has potential to
improve available application, but the method of im-
plementing deep learning into mobile applications is
still in its infancy. Deep learning based software re-
quire large amounts of memory and processing capa-

Kendrick, C., Tan, K., Walker, K. and Yap, M.
The Application of Neural Networks for Facial Landmarking on Mobile Devices.
DOI: 10.5220/0006623101890197
In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2018) - Volume 4: VISAPP, pages
189-197
ISBN: 978-989-758-290-5
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

189



bilities, which is not currently efficient for mobile de-
vices. However, the processing power and memory of
mobile devices is increasing at a rapid rate, allowing
for multi-core processing of large quantities of data,
which has the possibility to allow even some of the
deeper neural networks to run on the devices.

As deep learning is outperforming machine learn-
ing for real-world applications, such as medical
healthcare (Goyal et al., 2017), skin assessment (Alar-
ifi et al., 2017), security (Yi et al., 2014) and waste
management (Sudha, 2016), we demonstrate the ca-
pabilities of implementing deep learning algorithms
to mobile devices and analyse its effectiveness. This
paper will evaluate the current methods of integrating
trained neural networks onto mobile devices.

2 RELATED WORKS

Deep learning and facial landmarking are well re-
searched areas. Deep learning can perform many dif-
ferent tasks, such as object classification and segmen-
tation, to do these the networks structure and layer
methodology must be suited to that task. Facial land-
marking is best suit for a regression based approach
as it has been commonly proven most effective, be-
cause the landmarks will shift with different facial ex-
pressions. In deep learning, regression is performed
by ensuring the networks layer do not perform any
‘squashing’ of the data. Furthermore, this means the
exclusion of methods, such as Softmax (Krizhevsky
et al., 2012) and using Root Mean Squared error
(RMSE) to calculate the loss, as it provides the dis-
tance from the ground truth which is required for re-
gression over the traditional hit or miss methods for
classification (Litjens et al., 2017). Furthermore, con-
sideration also has to be based on the type of activa-
tion method to prevent restricting the networks out-
puts, such as Rectified Linear Unit (ReLU) can be
used for regression. Other methods to perform re-
gression are provided through APIs, such as Keras
(Chollet, 2016) which provides a regression function,
but after some initial tests, it shows little difference in
performance with an increase in training times.

To make a neural network more efficient, there are
many different options, such as use smaller kernels in
the convolutions and output less convolution images
or use less filters, a different output image is produced
for each filter requiring more memory, at each of the
layers. However, another method to reduce the strain
of the network is to implement max-pooling layers
(Srivastava et al., 2014) into the network. The max-
pooling layer split the images into a number of re-
gions, from each region the highest value is taken a

placed into a new matrix, illustrated Fig 2. This also
helps with over-fitting as the data becomes more ab-
stract. The issue with implementing max-pooling lay-
ers is that by shrinking the data, data is lost, possibly
reducing the accuracy, but reducing processing time.
For facial landmarking, the data should be preserved
as much as possible, as it is easy to lose key facial
features, such as the eye corners and nose tip when
employing max-pooling layers. Implementing max-
pooling allows networks to run much faster on lower
power devices. The max-pooling acts as a cost/reward
system which will be analysed in this paper on the
trade-off between speed and accuracy.

2.1 Deep Learning for Facial
Landmarks

Deep learning for facial landmarking is a known area
of research and is used in some commercial applica-
tions, such as face++ (Megvii, 2015) which utilises
deep learning to give high accuracy results. However,
this application requires a connection to their servers
and cannot run on devices in real-time. Researchers
have shown that deep learning can be used effectively
to solve regression problems, such as predicting a
point on an image (Zhang et al., 2016; Lai et al.,
2015). Recent methods use deep learning for face
landmarking are performed by Zhang et al. (Zhang
et al., 2016), where they use auxiliary attributes to aid
in deciphering the data. During the training stages
of the model they provided additional parameters to
identify, such as the gender, glasses, expression and
pose. These additional parameters can help the net-
work, identify key pieces of information that can af-
fect the results drastically, such as facing left or right
can aid the network to identify, when a point is oc-
cluded. The results showed increased accuracy in
comparison to other systems.

Hochreiter et al. (Hochreiter and Schmidhuber,
1997) proposed a recurrent Long Short Term Memory
(LSTM) network with a focus on the inherited regres-
sion problem (Lai et al., 2015) in facial landmarking.
The network defined by Lai et al. (Lai et al., 2015)
uses deconvolution layers which pad out the convolu-
tions, effectively up-scaling the images. The mix of
max-pooling, deconvolution and the nature of LSTM,
help avoid over fitting while still learning the core fea-
tures of the facial landmarks position. Other methods,
such as Zhou et al. (Zhou et al., 2013) uses a cascad-
ing style detector to identify sections of the face and
uses the bounding box region to align points to the
face. Similarly, Luo et al. (Luo et al., 2012) who also
uses a cascade style classifier to retrieve the facial fea-
tures, but then performs segmentation on the features

VISAPP 2018 - International Conference on Computer Vision Theory and Applications

190



instead of using the bounding boxes.
Bulat and Tzimiropouloas (Bulat and Tzimiropou-

los, 2017a), focus on using binary convolution neu-
ral networks by changing the hierarchy style of the
networks to parallel style network. They reduce the
amount of data being restricted by processing the pre-
vious convolution layers. Their method manages to
match the accuracy of existing techniques while re-
ducing the bottleneck and the total required parame-
ters, allowing the network to run on lower powered
devices.

2.2 Neural Network Compression

Neural networks can be of varying sizes and scales.
The types of layers can drastically increase the
amount of processing required to run the network,
such as the Inception (Szegedy et al., 2016) and
LSTM (Hochreiter and Schmidhuber, 1997) when
compared to a convolution layer. This section will de-
scribe the work done to compress and analyse neural
network performance on mobile devices. The most
commonly used methods to compress a neural net-
work is the hashing trick or HashedNets by Chen et
al. (Chen et al., 2015). Hashed networks function by
grouping random connection weights together into a
single ‘bucket’, the connection weights are all tuned
by one parameter reducing the networks total size and
memory requirements. However, by joining multi-
ple weight values into one can cause the network to
become less diverse, meaning the networks accuracy
can be negatively affected. Another method called
One-Shot Whole Compression by Kim et al. (Kim
et al., 2016) focuses on shrinking the entire convo-
lution based network. Kim et al. (Kim et al., 2016)
splits the compression into three main stages:

• Identification. Using Bayesian matrix factorisa-
tion the sections of the neural network, which con-
tributes most to the success of the network are
identified. By identifying the highest contribution
sections, the method can better preserve its accu-
racy.

• Reduction. Using the ranking from the Bayesian
matrix factorisation, the method can apply one of
two versions of Tuckers decomposition, the first
analyses the core components and then merges
them to a single tensor. Whereas, the second per-
forms Single Value Decomposition (SVD).

• Fine Tuning. As the network has been modified,
the results produced can differ significantly. Kim
et al. (Kim et al., 2016) retrains the network with
pre-built models to aid in accuracy recovery.

Overall, Kim et al. (Kim et al., 2016) method allows

Figure 1: A example of four 3*3 filters.

for large decreases in file size with only small losses
in accuracy. Research has also been done to see how
different layers, such as recurrent layers can be used
to shrink the network size (Robinson, 1994).

3 METHODOLOGY

This section will demonstrate and analyse the net-
works designed for this experiment and give details
into the reasoning behind them. After this, a descrip-
tion of the dataset and the elaboration of the prepro-
cessing steps.

To test the processing capability of the devices
when implementing neural networks, three basic neu-
ral networks have been defined, each with similar lay-
outs designed to maximise the efficiency of the net-
work. Each of the networks follow the same structure
as the Base network, as the purpose of this experi-
ment is to discriminate how the max-pooling layer af-
fects the applications capabilities, a simple neural net-
work (henceforth, basic network) is chosen. The basic
network consists of three layers: convolutions, max-
pooling and activation, followed by two fully con-
nected layers with intermediate activation layers and
the final output layer. The initial convolution layer

The Application of Neural Networks for Facial Landmarking on Mobile Devices

191



Figure 2: A example of a 2*2 max-pooling layer.

uses a 3×3 kernel, whereas the following convolu-
tions used a 2×2 kernel. The first two convolutions
used 32 filters on each image and the last convolu-
tion uses 64. Filters are used to widen the neural
network as illustrated in Fig 1, they work by creat-
ing different convolution kernels for using on the in-
put image. Having multiple filters aid the network, as
different filters focus on the type of variation the net-
work could encounter, such as a frontal face filter or
side face filter. By having filter account for variation
more reliable network can be produced. The max-
pooling layers were fixed to 2×2, effectively shrink-
ing the convoluted images by half as shown in Fig 2.
The initial input size of the image was 96×96 mean-
ing the final image size for the fully connected layer
was 12×12 which equals to the required output of 136
(68 points × 2 for the X and Y). The two activation
layers uses 1000 and 500 connected neurons before
connecting to the output layer. The goal of these net-
works is to give a clear view of the cost/reward for im-
plementing max-pooling layer to reduce the workload
of the network and how that impacts the networks ac-
curacy. The max-pooling layer were removed starting
with the first, as the longer the network maintains the
full data the more it can learn. The seed for gener-
ating the neurons initial weighting was fixed to 7 to
improve reproducibility. Table 1 shows the number of
max-pooling layer in each model.

A network with no max-poolings was not con-
sidered due to the memory limitations. The mem-
ory requirements for training could be improved by
reducing the batch size, however, this would have a
detrimental effect on the accuracy and increase train-
ing times. This is a complicated process, in terms
of requirements, as each filter produces an additional
image for each layer, so from a single input image,
65536 images of 96*96 are produced (1*32*32*64),
this would required 604MB, much higher then what
current phones have. For the training stage, even the
Titan Pascal (12GB) card with reasonable batch sizes
were not possible. The networks were trained over
300 epochs, this is because more data was retained
through the removal of max-pooling layer, the longer
the networks need to converge and this gave the fairest
option for comparison, as this shows when conver-
gence occurs.

For each of the networks, ReLU was implemented
as well as RMSE (eq. 1) for loss calculation equation:

RMSE =

√
n

∑
i=0

(yi− y′i)
n

(1)

where:

• n is the number of samples in the training batches.

• yi is the ground truth output for the training image.

• y′i is the predicted output for the training image.

These methods prevent any ‘squashing’ of the data
between 0 - 1, which prevents a fully regressive learn-
ing system. The Adam optimizer (Kingma, 2015) was
used. The accuracy for the network was calculated us-
ing binary accuracy (eq. 2), as with landmarking the
chances of early networks getting an exact hit of the
landmarks is slim. As a result, the distance for the
point is required and this gives a clearer indication of
how well the trained model is performing.

Accuracy =
∑(yi = [y′i])

n
(2)

where:

• n is the number of samples in the training batches.

• yi is the ground truth output for the training image.

• [y′i] is the rounded predicted output of the training
image.

The networks were designed and trained using
tensorflow (Abadi et al., 2016), thus the tensors were
saved in graph form with both weights and structure
in the same file. Optimization was then performed
to remove the training, testing and none require vari-
ables from the graph. The networks were trained us-
ing the GTX 1080Ti GPU (11GB) with a batch size
of 120. The batch size was determined by modifying
the Basic network multiple times and comparing the
accuracy which have a high impact. To ensure consis-
tency, all networks were trained with the same batch
size and the random weights initializer seed was set to
7 to increase reproducibility. We also split 10% from
the training set to be used for validation. The data
chosen for validation was performed by the Keras in-
terface.

In this section, we review the methodology behind
the training of neural network and the preparation of
data. The network was trained on the Morph dataset
(Albert and Ricanek Jr, 2008) using 49828 out of the
55134 available within the dataset, images were ex-
cluded if they were taken in incorrect lighting, de-
formed or unrecognisable, had most of the face ob-
scured or failed in both the OpenCV and Dlib (King,
2013) face detectors, as both are commonly used face

VISAPP 2018 - International Conference on Computer Vision Theory and Applications

192



Table 1: A comparison of the accuracy and loss for three types of network.

Network Max-Pooling layers Accuracy Loss
Basic 3 0.63 0.17
Two max-poolings 2 0.64 0.12
One max-pooling 1 0.69 0.38

Figure 3: A visualisation of the basic network used for this experiment.

detectors. Images that met the required standard were
passed to the next stage of annotation. To speed up
the landmark annotation and maintain consistency,
which shows to boost system accuracy (Mathias et al.,
2014), an automatic approach was taken, similar to
(Bulat and Tzimiropoulos, 2017b; Cao et al., 2014).
The dataset was loaded into a created program that
would first transform all the images into grayscale,
the faces were then cropped out using Dlibs face de-
tector and resized to 96×96 images. The images were
passed into Dlibs face point detector to retrieve 68 fa-
cial landmarks. The points and 96×96 images were
saved into a csv file as input data for training. The for-
mat for the csv file was face point x coordinate, face
point y coordinate for all 68 points on the face and the
final cell was the raw 96×96 pixel information with
a space between each pixel value. The morph dataset
consists of frontal face only and with limited expres-
sions.

The neural networks were trained to take in a
96×96 grayscale face image and process to retrieve
the facial landmarks. To retrieve the facial image, the
OpenCV library (Corporation et al., 2000) was used
as it has high accuracy (Zhu and Ramanan, 2012),
the library is compatible to mobile platforms making
it suitable for this experiment. The OpenCV library
uses a Viola and Jones (Viola and Jones, 2004) style
cascade classifier to detect the faces. To prepare the
images for the network, the images were first con-
verted to grayscale from RGBA (Red, Green, Blue,
Alpha) to reduce the processing time and also resized
to 96× 96. The resulting image after cropping and
rescaling was then processed by the network. The
process of preparing data was integrated into the mo-
bile application using the phones backwards facing
camera (faces away from the user’s face) as the live
image feed allowing for the real-time cropping of the
face and landmarking.

4 NEURAL NETWORK
INTEGRATION

Neural Networks have seen an increase of use in re-
cent years (Learning, 2017; Schmidhuber, 2015), but
focusing on how accurate and effective the networks
were. Whereas, another major focus should be the
implementation of neural networks into consumer and
industry based systems. As neural networks are show-
ing increase accuracy and reliability, it shows that
many current consumer based applications could be
improved by using these techniques. It is possible
once the model is trained, to run the model on de-
vices of significantly less processing power as the re-
moval of the back propagation and training layers al-
lows faster computation. However, the memory for
processing the image is still required which is still
significant amount for a mobile device. Neural net-
works are stored usually as two separate files. The
first file is the model, the networks layout and struc-
ture. The second file is the networks weights, which
is larger size and controls how the network processes
the data. For porting to a mobile device, merging the
weights and network structure files is required saving
loading times and memory. To run a trained neural
network, the device has to be able to load the file into
memory, which is an issue on mobile devices as even
the most modern mobile devices contain little RAM,
such as the iPhone 7 which has 2GB. In addition, ten-
sorflow can have issues with file sizes over 68mb, due
to android compression. To load the model onto the
device, Tensoflow has a mobile specific libary (Abadi
et al., 2016) for android, this allows the device to open
a tensor graph containing the model and weights. To
build an Android Package (APK), Android Studio
(Inc, 2017a) was used with a build targeting the API
level 25 on x86 and x64 CPU architecture, this was to
ensure compatibility with the Tensorflow library and
OpenCV. By using the TensorFlow library, the model

The Application of Neural Networks for Facial Landmarking on Mobile Devices

193



can be loaded onto the device if sufficient memory is
available. OpenCV is then used to access the mobile
camera to detect faces and pre-process the images for
the neural network.

5 RESULTS AND DISCUSSION

Using multiple networks, we showed that to track a
large number of points on the face, max-pooling lay-
ers can have a detrimental effect on the results of the
tracking as facial feature and expression were lost to
the degradation of the data. We compare the accuracy
and the loss of different max-pooling layers in Table
1.

As the experiments are to determine the effective-
ness of how deep learning can be implemented on a
mobile device, the file size of the trained net is com-
pared and illustrated in Table 2. The frames per sec-
ond is also given on the mobile devices as well as the
image size before the fully connected layers.

Table 2: Table of the result file sizes.

Network File size Image size FPS
Basic 32.5MB 12×12 15
Two max-poolings 120MB 24×24 N/A
One max-pooling 518MB 48×48 N/A
Face Detector Only 50KB 864×480 17

As shown in Table 2, the number of max-pooling
layers has a incremental impact of the resulting
weights file. For reference of how this would af-
fect an application, the current Google Play store
(Google, 2017) rules for publishing an application
are provided. An application on the Play store can-
not exceed the files size of 100MB. Compression on
the optimized file also cannot be performed as stan-
dard methods negatively effect the reading and use of
the files. As a result, the file size of the one max-
pooling and two max-poolings could not be loaded
onto the mobile device. Fig 4 illustrates that as the
network begins to retain more data by removing max-
pooling layer the network gets significant boosts in
accuracy. The increase is much more prominent from
One max-pooling to Two max-pooling, this could be
as it loses more data through max-pooling compared
to Two max-poolings to Basic max-poolings. Fig 5
shows that the more max-pooling layer lowers the
loss, but is not as significant as the impact on ac-
curacy. Fig 6 illustrates that with max-pooling lay-
ers removed the networks accuracy increases this is
much more prominent between Basic max-poolings
and Two max-poolings. The reason behind the accu-
racy drops is that, by using max-pooling on the neu-

Figure 4: The networks accuracy, both training and valida-
tion.

ral face and large movements can be learned, such as
mouth open, because subtle movements and deviation
a lost though pooling. However, the method fails to
track expressions, such as mouth widen and struggle
with accurate placement of the eyes. However, With
each improvement we also receive a corresponding
drop in performance.

Figure 5: The networks loss, both training and validation.

Figure 6: The networks MAE, both training and validation.

We ported each of the models to a HTC 10 mo-
bile phone (4GB Ram, Quad-core (2× 2.15GHz and
2× 2.16GHZ) CPU, Adreno 530 GPU) to test the
effectiveness on live data. The live tests show that
even though the basic network runs the fastest it can-
not distinguish between many of the facial movement
include mouth widen, the system favours the neutral
face. As shown in Table 2 all trained models struggle

VISAPP 2018 - International Conference on Computer Vision Theory and Applications

194



to reach a real-time landmarking time, but the system
also had to perform features, such as the face detec-
tion. When comparing the performance of the sys-
tems we recommend to implement one max-pooling
as it aids performance significantly with little impact
on accuracy, giving the best cost/reward trade-off, but
further research needs to be done to optimize the size
for mobile devices. However, if hardware is restricted
and accuracy is not too important, the the two max-
poolings will suffice. Image from the live capture is
shown in Fig. 7, where we tested in both controlled
light conditions and uncontrolled lighting Fig. 8. We
also performed a comparison of glasses on/off as in
Fig. 9. We provide all codes use to build the android
application (Android studio project), codes to train /
export (Python 3.5) the model and the models (.pb)
used for this experiment publicly available.

Figure 7: Example output of the android application.

6 DISCUSSION

We have demonstrated the effectiveness of basic neu-
ral networks on mobile devices and compared the sub-
tle changes in the network design and its effect on
the performance, both on the device and accuracy of
the network. More processor intensive networks can
achieve better accuracy for the system, but its perfor-
mance on a mobile is unregistered and an open area
of research. By testing higher resource required net-
works on mobile devices and showing their effective-
ness in comparison to the one shown in this paper will
aid in benchmarking the progression of systems in the
future. A major requirement for future work is to per-
form optimization on the application to increase the
frame rate to real time, methods, such as Fagg et al.
(Fagg et al., 2017) fast fourier transform face detector,
that can run over 60fps freeing up memory and time
for the neural network. Other methods could also be
tested, such as Ranjan et al. (Ranjan et al., 2017) to
allow a neural network to handle everything from face
detection to landmarking.

Figure 8: Example output of the android application in
a controlled environment(bottom) and wild environment
(top), with both male and female faces.

Figure 9: Same Scenario as Fig 8, but with glasses.

7 FUTURE WORK

A future path of our research is to determine how the
variation of phone hardware affects the neural net-
works. Furthermore, this include the phone specific
chips that are designed for image processing, such
as the chips that allow these “low power” devices
to record and play 4K images in real-time, in which
some modern day computers have difficulty doing.
From observation the training times varied greatly be-
hind the different levels of max-poolings used and if
the network implement the regression learning. This
would lead to further research to investigate how the
different number of max-pooling affect the training
time of deep learning networks. A limitation of the
system is that it relies on face detector to identify and
segment the face for landmarking. Another, limitation
is that the network has not been train on none-face im-
ages, meaning false detections from the face detector,
as the system does not understand none-face images,
causes the network to return an average face shape
points. A future path of research would be to expand
the networks capabilities and training set to include
none-face images so this system can handle false pos-
itives from the face detector. As even some of the net-
works shown in this paper could not be ported to the
phone for memory issues, future work can be done on

The Application of Neural Networks for Facial Landmarking on Mobile Devices

195



test how the filter sizes effects the results of the net-
work.

8 CONCLUSION

We have demonstrated that the max-pooling layers
have high potential to aid in compressing a networks
size to operate on mobile devices. Employing max-
pooling layers allows networks to become ‘lighter’
and be trained faster, but with reduced accuracy. With
the basic network, the standard learning libraries in
networks that don’t employ the max-pooling layers
have improved results. We have implemented a deep
learning network onto a mobile platform, tested the
performance on real-world data. We have also show
that the outputs on an array of varying neural net-
works to demonstrate how the networks were ef-
fected by the max-pooling layer. By comparing the
cost/reward, we recommend the Basic max-pooling
network as it has high accuracy, with little impact on
the phones memory or processing capabilities for mo-
bile platforms.

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M.,
Kudlur, M., Levenberg, J., Monga, R., Moore, S.,
Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V.,
Warden, P., Wicke, M., Yu, Y., Zheng, X., Brain, G.,
Osdi, I., Barham, P., Chen, J., Chen, Z., Davis, A.,
Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,
M., Kudlur, M., Levenberg, J., Monga, R., Moore,
S., Murray, D. G., Steiner, B., Tucker, P., Vasude-
van, V., Warden, P., Wicke, M., Yu, Y., and Zheng,
X. (2016). TensorFlow : A System for Large-Scale
Machine Learning. Osdi.

Alarifi, J., Goyal, M., Davison, A., Dancey, D., Khan, R.,
and Yap, M. H. (2017). Facial Skin Classification Us-
ing Convolutional Neural Networks. In Image Anal-
ysis and Recognition: 14th International Conference,
ICIAR 2017, Montreal, QC, Canada, July 5–7, 2017,
Proceedings, volume 10317, page 479. Springer.

Albert, A. M. and Ricanek Jr, K. (2008). The MORPH
database: investigating the effects of adult craniofa-
cial aging on automated face-recognition technology.
Forensic Science Communications, 10(2).

Bulat, A. and Tzimiropoulos, G. (2017a). Binarized Con-
volutional Landmark Localizers for Human Pose Esti-
mation and Face Alignment with Limited Resources.

Bulat, A. and Tzimiropoulos, G. (2017b). How far are we
from solving the 2D & 3D Face Alignment problem?
(and a dataset of 230,000 3D facial landmarks).

Cao, C., Weng, Y., Zhou, S., Tong, Y., and Zhou, K. (2014).
FaceWarehouse: A 3D facial expression database for

visual computing. IEEE Transactions on Visualization
and Computer Graphics, 20(3):413–425.

Chen, W., Wilson, J. T., Tyree, S., Weinberger, K. Q., and
Chen, Y. (2015). Compressing Neural Networks with
the Hashing Trick. Proceedings of The 32nd Inter-
national Conference on Machine Learning, 37:2285–
2294.

Chollet, F. (2016). Keras.
Co, X. M. T. (2017). BeautyPlus.
Corporation, I., Garage, W., and Itseez (2000). OpenCV.
Fagg, A., Lucey, S., and Sridharan, S. (2017). Fast , Dense

Feature SDM on an iPhone. pages 95–102.
Google (2017). Google Play Store.
Goyal, M., Reeves, N., Rajbhandari, S., Spragg, J., and Yap,

M. H. (2017). Fully Convolutional Networks for Di-
abetic Foot Ulcer Segmentation. Systems, Man, and
Cybernetics (SMC), 2017 IEEE International Confer-
ence on.

“Grother”, P. and Ngan, M. (2016). The IJB-A Face Identi-
fication Challenge Performance Report.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.

Inc, G. (2017a). Android Studio.
Inc, S. (2017b). Snapchat.
Kendrick, C., Tan, K., Williams, T., and Yap, M. H. (2017).

An Online Tool for the Annotation of 3D Models.
pages 362–369.

Kim, Y.-D., Park, E., Yoo, S., Choi, T., Yang, L., and Shin,
D. (2016). Compression of Deep Convolutional Neu-
ral Networks for Fast and Low Power Mobile Appli-
cations. Iclr, pages 1–16.

King, D. (2013). Dlib.
Kingma, D. P. (2015). A : a m s o. pages 1–15.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-

ageNet Classification with Deep Convolutional Neu-
ral Networks. Advances In Neural Information Pro-
cessing Systems, pages 1–9.

Lai, H., Xiao, S., Pan, Y., Cui, Z., Feng, J., Xu, C., Yin,
J., and Yan, S. (2015). Deep Recurrent Regression for
Facial Landmark Detection. pages 1–13.

Learning, D. (2017). Deep Learning for Consumer Devices
and Services. (APRIL).

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A.,
Ciompi, F., Ghafoorian, M., van der Laak, J. A. W. M.,
van Ginneken, B., and Sánchez, C. I. (2017). A Survey
on Deep Learning in Medical Image Analysis. (1995).

L’Oreal (2017). Makeup genius.
Luo, P., Wang, X., and Tang, X. (2012). Hierarchical Face

Parsing via Deep Learning. pages 1–8.
Mathias, M., Benenson, R., Pedersoli, M., and Van Gool,

L. (2014). Face detection without bells and whis-
tles. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 8692 LNCS(PART
4):720–735.

Megvii, I. (2015). Face Plus Plus.
Ranjan, R., Sankaranarayanan, S., Castillo, C. D., and Chel-

lappa, R. (2017). An All-In-One Convolutional Neural
Network for Face Analysis. pages 17–24.

VISAPP 2018 - International Conference on Computer Vision Theory and Applications

196



Robinson, A. J. (1994). An Application of Recurrent Nets
to Phone Probability Estimation. IEEE Transactions
on Neural Networks, 5(2):298–305.

Schmidhuber, J. (2015). Deep Learning in neural networks:
An overview. Neural Networks, 61:85–117.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. (2014). Dropout: A Simple
Way to Prevent Neural Networks from Overfitting.
Journal of Machine Learning Research, 15:1929–
1958.

Sudha, S. (2016). an Automatic Classification Method for
Environment Friendly Waste Segregation Using Deep
Learning. (Tiar):65–70.

Szegedy, C., Ioffe, S., and Vanhoucke, V. (2016). Inception-
v4, Inception-ResNet and the Impact of Residual Con-
nections on Learning. Arxiv, page 12.

Viola, P. and Jones, M. J. (2004). Robust real-time face
detection. International journal of computer vision,
57(2):137–154.

Yi, D., Lei, Z., Liao, S., and Li, S. Z. (2014). Learning Face
Representation from Scratch. arXiv.

Zhang, Z., Luo, P., Loy, C. C., and Tang, X. (2016). Learn-
ing Deep Representation for Face Alignment with
Auxiliary Attributes. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 38(5):918–930.

Zhou, E., Fan, H., Cao, Z., Jiang, Y., and Yin, Q. (2013).
Extensive facial landmark localization with coarse-to-
fine convolutional network cascade. Proceedings of
the IEEE International Conference on Computer Vi-
sion, pages 386–391.

Zhu, X. and Ramanan, D. (2012). Face detection, pose es-
timation, and landmark localization in the wild. Pro-
ceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages
2879–2886.

The Application of Neural Networks for Facial Landmarking on Mobile Devices

197


