of join graphs. Similar results could also be obtained
for other subclasses, such as the joins of graphs with
no more than max{∆
1
,∆
2
}+ 1 per connected com-
ponent, since a pullback from each component to the
K
max{∆
1
,∆
2
}+1
could be easily obtained. We encourage
future works to investigate more applications.
ACKNOWLEDGEMENTS
We thank the anonymous referee for the reading and
the suggestions given.
REFERENCES
Alon, N. and Stav, U. (2008). The maximum edit distance
from hereditary graph properties. J. Comb. Theory B,
98:672–697.
Behzad, M. (1965). Graphs and their chromatic numbers.
PhD thesis, Michigan State University.
Behzad, M., Chartrand, G., and Jr., J. K. C. (1967). The
color numbers of complete graphs. J. London Math.
Soc., 42:226–228.
Brooks, R. L. (1941). On colouring the nodes of a net-
work. Proc. Cambridge Philos. Soc., Math. Phys. Sci.,
37:194–197.
Cai, L. and Ellis, J. A. (1991). NP-completeness of edge-
colouring some restricted graphs. Discrete Appl.
Math., 30:15–27.
Chetwynd, A. G. and Hilton, A. J. W. (1984). The chromatic
index of graphs of even order with many edges. J.
Graph Theory, 8:463–470.
Chetwynd, A. G. and Hilton, A. J. W. (1986). Star multi-
graphs with three vertices of maximum degree. Math.
Proc. Cambridge Philos. Soc., 100:303–317.
Corneil, D. G., Perl, Y., and Stewart, L. K. (1985). A linear
recognition algorithm for cographs. SIAM J. Comput.,
14(4):926–934.
de Figueiredo, C. M. H., Meidanis, J., and de Mello, C. P.
(1997). On edge-colouring indifference graphs. Theor.
Comput. Sci., 181:91–106.
de Figueiredo, C. M. H., Meidanis, J., and de Mello, C. P.
(1999). Total-chromatic number and chromatic index
of dually chordal graphs. Inf. Process. Lett., 70:147–
152.
de Figueiredo, C. M. H., Meidanis, J., and de Mello, C. P.
(2000). Local conditions for edge-coloring. J. Com-
bin. Math. Combin. Comput., 32:79–91.
de Figueiredo, C. M. H., Meidanis, J., de Mello, C. P., and
Ortiz, C. (2003). Decompositions for the edge colour-
ing of reduced indifference graphs. Theor. Comput.
Sci., 297:145–155.
Erd
˝
os, P., Rubin, A. L., and Taylor, H. (1979). Choosability
in graphs. In Proc. West Coast Conference on Combi-
natorics, Graph Theory, and Computing, number 26
in Congr. Numer., pages 125–157.
Fiorini, S. and Wilson, R. J. (1977). Edge-colourings of
graphs. Pitman.
Galvin, F. (1995). The list chromatic index of a bipartite
multigraph. J. Comb. Theory B, 63:153–158.
Gravier, S. (1996). A Haj
´
os-like theorem for list coloring.
Discrete Math., 152:299–302.
Gr
¨
otschel, M., Lov
´
asz, L., and Schrijver, A. (1988). Ge-
ometric Algorithms and Combinatorial Optimization.
Springer-Verlag.
H
¨
aggkvist, R. and Janssen, J. (1997). New bounds on the
list-chromatic index of the complete graph and other
simple graphs. Combin. Probab. Comput., 6:295–313.
Hilton, A. J. W. and Hind, H. R. (1993). The total chromatic
number of graphs having large maximum degree. Dis-
crete Math., 117:127–140.
Hilton, A. J. W. and Johnson, P. D. (1987). Graphs
which are vertex-critical with respect to the edge-
chromatic number. Math. Proc. Cambridge Philos.
Soc., 102:103–112.
Hind, H., Molloy, M., and Reed, B. (2000). Total colour-
ing with δ + poly(log δ) colours. SIAM J. Comput.,
28:816–821.
Hind, H. R. (1990). An upper bound for the total chromatic
number. Graphs Combin., 6:153–159.
Holyer, I. (1981). The NP-completeness of edge-colouring.
SIAM J. Comput., 10(4):718–720.
Ito, H. and Yokoyama, M. (1998). Linear time algorithms
for graph search and connectivity determination on
complement graphs. Inf. Process. Lett., 66:209–213.
Janssen, J. C. M. (1993). The Dinitz problem solved for
rectangles. Bull. Amer. Math. Soc., 29:243–249.
Jensen, T. R. and Toft, B. (1994). Graph Coloring Prob-
lems. Wiley-Interscience.
K
˝
onig, D. (1916). Graphok
´
es alkalmaz
´
asuk a de-
termin
´
ansok
´
es a halmazok elm
´
elet
´
ere. Math.
Term
´
eszettudom
´
anyi
´
Ertesito, 34:104–119.
Leidner, M. E. (2012). A study of the total coloring of
graphs. PhD thesis, University of Louisville.
Lima, A. R. C., Garcia, G., Zatesko, L. M., and de Almeida,
S. M. (2015). On the chromatic index of cographs and
join graphs. Electron. Notes Discrete Math., 50:433–
438.
Machado, R. C. S. and de Figueiredo, C. M. H. (2010). De-
compositions for edge-coloring join graphs and cobi-
partite graphs. Discrete Appl. Math., 158:1336–1342.
McDiarmid, C. J. H. and S
´
anchez-Arroyo, A. (1994). Total
colouring regular bipartite graphs is NP-hard. Dis-
crete Math., 124:155–162.
Molloy, M. and Reed, B. (1998). A bound on the total chro-
matic number. Combinatorica, 18:241–280.
Niessen, T. (1994). How to find overfull subgraphs in
graphs with large maximum degree. Discrete Appl.
Math., 51:117–125.
Niessen, T. (2001). How to find overfull subgraphs in
graphs with large maximum degree, II. Electron. J.
Combin., 8.
Padberg, M. W. and Rao, M. R. (1982). Odd minimum cut-
sets and b-matching. Math. Oper. Res., 7:67–80.
ICORES 2018 - 7th International Conference on Operations Research and Enterprise Systems
252