Table 3: Instances with 100clients and 2 days.
v=2
CLH BIH
Instance CPU N.V.C f (x) CPU N.V.C f (x)
A1 0,44 0,00% 90,47 e 4,10 0,00% 87,56 e
A2 0,56 0,00% 104,69 e 4,42 0,00% 88,01 e
A3 0,61 0,00% 102,25 e 3,85 0,00% 83,73 e
A4 0,56 0,00% 106,49 e 4,14 0,00% 91,61 e
A5 0,65 0,40% 105,31 e 4,51 0,00% 97,98 e
B1 0,46 0,00% 61,13 e 4,71 0,00% 45,09 e
B2 0,63 0,00% 65,45 e 5,37 0,00% 48,36 e
B3 0,65 0,00% 65,91 e 5,24 0,00% 47,68 e
B4 0,59 0,00% 68,34 e 5,11 0,00% 50,47 e
B5 0,62 0,00% 66,74 e 4,86 0,00% 47,87 e
Average 0,58 0,04% 83,68 e 4,63 0,00% 68,84 e
v=3
CLH BIH
Instance CPU N.V.C f (x) CPU N.V.C f (x)
A1 0,38 0,00% 107,63 e 3,92 0,00% 80,95 e
A2 0,46 0,00% 108,85 e 4,77 0,00% 81,97 e
A3 0,49 0,00% 104,18 e 3,83 0,00% 83,40 e
A4 0,33 0,00% 113,88 e 3,47 0,00% 89,08 e
A5 0,36 0,30% 111,09 e 3,59 0,00% 91,80 e
B1 0,45 0,00% 65,99 e 5,80 0,00% 45,84 e
B2 0,42 0,00% 72,25 e 5,38 0,00% 48,55 e
B3 0,50 0,00% 72,32 e 5,61 0,00% 47,36 e
B4 0,36 0,00% 74,01 e 4,52 0,00% 48,75 e
B5 0,42 0,00% 72,78 e 4,15 0,00% 48,32 e
Average 0,42 0,03% 90,30 e 4,50 0,00% 66,60 e
v=4
CLH BIH
Instance CPU N.V.C f (x) CPU N.V.C f (x)
A1 0,31 0,00% 106,07 e 3,56 0,00% 82,41 e
A2 0,32 0,00% 109,17 e 3,52 0,00% 82,82 e
A3 0,41 0,00% 108,48 e 3,45 0,00% 80,83 e
A4 0,33 0,20% 118,76 e 3,73 0,00% 86,98 e
A5 0,35 0,30% 113,57 e 3,72 0,00% 88,83 e
B1 0,33 0,00% 70,62 e 4,80 0,00% 45,84 e
B2 0,31 0,00% 74,37 e 4,39 0,00% 48,55 e
B3 0,36 0,00% 75,86 e 4,16 0,00% 47,36 e
B4 0,33 0,00% 76,72 e 4,31 0,00% 48,75 e
B5 0,34 0,00% 77,20 e 3,67 0,00% 48,32 e
Average 0,34 0,05% 93,08 e 3,93 0,00% 66,07 e
not manage to insert all clients in most instances. The
computing time of BIH remains higher than the com-
puting time of CLH, but this computing time of BIH
is always reasonable (it reaches at maximum 32,73
seconds).
In the following two figures, we compare the
average CPU and the average cost of the solutions
obtained by the two heuristics in the different settings
of instances.
Table 4: Instances with 100 clients and 3 days.
v=2
CLH BIH
Inst CPU N.V.C f (x) CPU N.V.C f (x)
A1 0,25 0,00% 123,55 e 3,40 0,00% 95,86 e
A2 0,25 0,00% 134,72 e 3,40 0,00% 94,98 e
A3 0,25 0,00% 127,15 e 3,20 0,00% 92,56 e
A4 0,25 0,00% 135,92 e 3,13 0,00% 98,83 e
A5 0,26 0,00% 130,60 e 3,36 0,00% 98,90 e
B1 0,18 0,00% 123,55 e 3,56 0,00% 45,84 e
B2 0,18 0,00% 134,72 e 3,38 0,00% 48,55 e
B3 0,18 0,00% 127,15 e 3,17 0,00% 47,36 e
B4 0,18 0,00% 135,92 e 3,46 0,00% 48,75 e
B5 0,19 0,00% 130,60 e 3,26 0,00% 48,32 e
Average 0,22 0,00% 130,39 e 3,33 0,00% 71,99 e
Table 5: Instances with n=200 and day=3.
v=2
CLH BIH
Inst CPU N.V.C f (x) CPU N.V.C f (x)
A1 1,63 0,10% 153,76 e 20,83 0,00% 148,40 e
A2 1,47 0,00% 162,50 e 20,28 0,00% 136,95 e
A3 1,50 0,20% 162,69 e 21,01 0,00% 146,32 e
A4 1,69 0,00% 162,47 e 19,93 0,00% 149,88 e
A5 1,70 0,40% 164,34 e 21,87 0,00% 147,28 e
B1 1,81 0,10% 97,09 e 25,21 0,00% 74,81 e
B2 2,48 0,00% 104,55 e 25,57 0,00% 77,17 e
B3 2,38 0,00% 104,44 e 24,31 0,00% 79,56 e
B4 2,45 0,00% 105,91 e 28,36 0,00% 77,54 e
B5 2,45 0,00% 104,40 e 28,01 0,00% 78,89 e
Average 1,96 0,08% 132,21 e 23,54 0,00% 111,68 e
If we compare the two heuristics for the 100 custo-
mers and 2 days instances in terms of cost, we could
see that the BIH heuristic performance is improved
by the increase of v, which is explained by the more
possibilities given to insert the customers and the less
needs to visit charging stations. In the other hand, the
cost of solutions given by the CLH heuristic is increa-
sing, which is due to the fact that the heuristic use in-
evitably all the vehicles every day. We predicate that
there is an optimal number of vehicles for the CLH
and that a smaller or even bigger fleet increases the
cost. BIH being not constrained to use all the vehi-
cles.
6 CONCLUSION
This paper addresses a new extension of the EVRP,
named PEVRP (Periodic Electric VRP), in which the
routing and charging are planned over a multi-period
ICORES 2018 - 7th International Conference on Operations Research and Enterprise Systems
270